Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Movie Shows Development of a Wound Dressing Research in Fast Motion


Someone suffers second- or third-degree burns: The wound must immediately be dressed and the dressing is to be changed regularly.

A short movie made by the group of Prof. Dr.-Ing. Stephan Barcikowski (University of Duisburg-Essen) shows the development of a dressing that promotes wound healing – from the materials research laboratory until the first practical trial (in English).

Even small area burns can be delicate, because healthy skin is our largest and most effective barrier against pathogens. It is therefore essential to support the wound healing process and to fight germs at the same time. Some metal ions, such as zinc or iron are known to accelerate healing.

Currently, the challenge for research is to develop an appropriate substrate to release the active ingredients gradually. In addition, it must be ensured that the active ingredients are harmful to bacteria but harmless to the human body.

Technical Chemist Nina Million from University of Duisburg-Essen (UDE) has developed a wound dressing containing nano zinc during her master thesis and was awarded the prize for the best thesis in 2013 by the German Society for Biomaterials. She removed zinc oxide and iron oxide nanoparticles from solid targets by laser pulses and applied them in a sponge-like carrier material.

This so-called microgel is arranged like a network enclosing the particles. Applied to a wound, it gradually releases antibacterial ions, while the particles themselves remain inside the microgel. Recently, studies adjusting the dose and thus optimizing the composition were successfully completed on rats.

The development succeeded in collaboration with the DWI – Leibniz Institute for Interactive Materials in Aachen and Hannover Medical School. An approximately four-minute movie produced together with the “Beilstein Institute zur Förderung der Chemischen Wissenschaften“ in Frankfurt clearly reconstructs the development process – in terms of interviews, laboratory demonstrations and explanatory drawings.

"It was fun to make this film," says Million. "But I also realized how difficult it is to summarize and communicate our own research in just a few words."

She can be proud of the result „Laser rapid prototyping of bioactive materials for medical treatment“ (in English):

Responsible for Press Release: Birte Vierjahn, Tel. +49 (0) 203 379 8176,

Ulrike Bohnsack | idw - Informationsdienst Wissenschaft

Further reports about: Microgels healing ions materials skin thesis wound wound-healing process zinc

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>