Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movie Shows Development of a Wound Dressing Research in Fast Motion

23.07.2014

Someone suffers second- or third-degree burns: The wound must immediately be dressed and the dressing is to be changed regularly.

A short movie made by the group of Prof. Dr.-Ing. Stephan Barcikowski (University of Duisburg-Essen) shows the development of a dressing that promotes wound healing – from the materials research laboratory until the first practical trial (in English).

Even small area burns can be delicate, because healthy skin is our largest and most effective barrier against pathogens. It is therefore essential to support the wound healing process and to fight germs at the same time. Some metal ions, such as zinc or iron are known to accelerate healing.

Currently, the challenge for research is to develop an appropriate substrate to release the active ingredients gradually. In addition, it must be ensured that the active ingredients are harmful to bacteria but harmless to the human body.

Technical Chemist Nina Million from University of Duisburg-Essen (UDE) has developed a wound dressing containing nano zinc during her master thesis and was awarded the prize for the best thesis in 2013 by the German Society for Biomaterials. She removed zinc oxide and iron oxide nanoparticles from solid targets by laser pulses and applied them in a sponge-like carrier material.

This so-called microgel is arranged like a network enclosing the particles. Applied to a wound, it gradually releases antibacterial ions, while the particles themselves remain inside the microgel. Recently, studies adjusting the dose and thus optimizing the composition were successfully completed on rats.

The development succeeded in collaboration with the DWI – Leibniz Institute for Interactive Materials in Aachen and Hannover Medical School. An approximately four-minute movie produced together with the “Beilstein Institute zur Förderung der Chemischen Wissenschaften“ in Frankfurt clearly reconstructs the development process – in terms of interviews, laboratory demonstrations and explanatory drawings.

"It was fun to make this film," says Million. "But I also realized how difficult it is to summarize and communicate our own research in just a few words."

She can be proud of the result „Laser rapid prototyping of bioactive materials for medical treatment“ (in English):
https://www.uni-due.de/cenide/presse_videos.php
or
http://www.beilstein.tv/tvpost/laser-rapid-prototyping-of-bioactive-materials-fo...

Responsible for Press Release: Birte Vierjahn, Tel. +49 (0) 203 379 8176, birte.vierjahn@uni-due.de

Ulrike Bohnsack | idw - Informationsdienst Wissenschaft

Further reports about: Microgels healing ions materials skin thesis wound wound-healing process zinc

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>