Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement disorders in young people related to ADHD

03.07.2014

GENETIC KEY TO PARKINSON'S DISEASE

Researchers at the University of Copenhagen and the Copenhagen University Hospital have identified a particular genetic mutation that may cause parkinsonism in young people. The mutation interferes with the brain's transport of the important signal substance dopamine and may also plays a role in mental diseases, e.g. ADHD. The findings have just been published in the scientific Journal of Clinical Investigation.


The researchers believe that DAT mutations may cause or predispose to the development of an entire spectrum of brain diseases – from relatively mild psychiatric diagnoses such as ADHD to serious movement disorders in infants such as Dopamine Transporter Deficiency Syndrome.

Being one of the most important signal substances in the brain, dopamine is particularly important for the control of movements and reward mechanisms in the brain. In the new study, Danish researchers have focused on a special protein, the dopamine transporter (DAT). DAT is a transport protein, which controls the effect of dopamine by mediating re-uptake of released dopamine from the synaptic cleft to the nerve cell. This is a very fine balance – and even small fluctuations can have major consequences for brain function:

"We can now for the first time document that mutations in the DAT-encoding gene can cause parkinsonism in young people. Furthermore, our studies show that the gene mutation is likely to contribute to the development of ADHD", explains Ulrik Gether, Professor at the Department of Neuroscience and Pharmacology, University of Copenhagen.

The researchers believe that DAT mutations may cause or predispose to the development of an entire spectrum of brain diseases – from relatively mild psychiatric diagnoses such as ADHD to serious movement disorders in infants such as Dopamine Transporter Deficiency Syndrome:

"Children born without a functional dopamine transporter develop serious movement disorders from birth, which may result in premature death. We have now identified mutations in the DAT-encoding gene as a novel cause of parkinsonism in adult patients and possibly also to complex mental disorders," says Freja H. Hansen, postdoc at the Department of Neuroscience and Pharmacology.

Genetic analysis based on one man

The scientific article, which has just been published in Journal of Clinical Investigation, is based on one patient only. Neurologists and psychiatrists have examined the male patient, who is 45 years old and has suffered from serious movement disorders since he was in his 20s. Furthermore, he has had various mental problems since childhood. When he was 36 years old, he was diagnosed with ADHD:

"It was a great relief for the patient and his family to get a genetic explanation of a disease that has affected him since childhood," says Freja H. Hansen.

But can the results be used in a wider perspective?

"We will, among other things, create a mouse model with the same genetic deficiencies, and we expect it to become a new disease model for parkinsonism and mental disorders. We hope that this will help us find new and better ways of treating these diseases," says Ulrik Gether.

"We would like to examine the frequency of mutations in the DAT-encoding gene in both children and young adults with serious movement disorders. This knowledge can clarify whether the DAT gene can be used in the genetic investigation of patients. Genetic examinations of embryos may also be relevant for some families," concludes Freja H. Hansen.

In this specific research project, the researchers at the University of Copenhagen have worked closely with the geneticists Tina Skjørringe and Lisbeth B. Møller from the Kennedy Centre at the Copenhagen University Hospital as well as with neurologist Lena E. Hjermind from the Department of Neurology also at the Copenhagen University Hospital.

Contact:

Ulrik Gether
Mobile: +45 28 75 75 48

Ulrik Gether | Eurek Alert!
Further information:
http://healthsciences.ku.dk/news/news2014/movement-disorders-in-young-people-related-to-adhd/

Further reports about: ADHD Copenhagen DAT Genetic Health Investigation Neuroscience diseases disorders dopamine movement mutations

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>