Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move to the red!

13.09.2010
Design and synthesis of rigid fluorophores

Stable dyes with sharp absorption and fluorescence emission bands in the red or NIR region of the spectrum, combined with high molar absorption coefficients and high fluorescence quantum yields, may find extensive use in many different fields, such as optical engineering, analytical chemistry, biological in vivo imaging and sensing applications, and materials science. In Chemistry—An Asian Journal, Wim Dehaen and co-workers, based at Katholieke Universiteit Leuven (Belgium), Lanzhou University (China), and the Université de Mons (Belgium) describe the preparation of difluoroboron dipyrromethene (BODIPY)-based dyes with increasing conformational rigidity that have absorption in the visible region of the spectrum.


Although a substantial number of BODIPY dye analogues have been developed, primarily through extended conjugation using aryl substituents, the substituted BODIPY dyes show red shifts of over 100 nm but have only low to moderate fluorescence quantum yields owing to non-radiative decay arising from the non-rigid nature of compounds. Alkenyl, and more-recently alkynyl substituents afforded large red shifts, but the rigidity of the triple bond generally results in higher quantum yields. Functionalization of the aromatic rings attached to the BODIPY core with heterocyclic rings even led to near infrared (NIR) emission; however, these dyes require lengthy multi-step syntheses of the fused-ring pyrrole starting materials and are restricted in scope to symmetrical frameworks.

Two BODIPY dyes were synthesized from a conformationally unconstrained indacene using simple palladium catalysis. These dyes showed restricted rotation of their phenoxy moieties, and thus absorb and fluoresce more intensely at longer wavelengths relative to their unrestricted analogues. Furthermore, reduction of the conformational flexibility in these dyes led to significantly higher fluorescence quantum yields. Quantum chemical calculations were also performed which showed that the increase in conformational constraint led to larger spectroscopic shifts. X-ray diffraction analysis showed a progressive increase in the extended planarity of the chromophore in line with increasing conformational rigidity, which explained the larger red shifts in the absorption and emission spectra.

This practically simple design strategy provides promise for the rapid development of new BODIPY-based dyes with increasing structural rigidity. Furthermore, the development of novel dyes with extended planarity is expected to afford higher quantum yields and more-substantial bathochromic shifts into the NIR region, which may find interesting application in a wide variety of fields.

Author: Wim Dehaen, Katholieke Universiteit Leuven (Belgium), http://chem.kuleuven.be/organ/losa/index.htm

Title: Synthesis, Spectroscopy, Crystal Structure Determination, and Quantum Chemical Calculations of BODIPY Dyes with Increasing Conformational Restriction and Concomitant Red-Shifted Visible Absorption and Fluorescence Spectra

Chemistry - An Asian Journal 2010, 5, No. 9, 2016–2026, Permalink to the article: http://dx.doi.org/10.1002/asia.201000248

Wim Dehaen | Chemistry - An Asian Journal
Further information:
http://www.chemasianj.org
http://chem.kuleuven.be/organ/losa/index.htm

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>