Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouthwash to Fight Cancer?

Oral disinfectants induce apoptosis in human oral tumor cells

Patients who suffer from gingivitis are often advised to use disinfectant mouthwashes. In the future, the active ingredients in these products could be used in a completely different area: As scientists have reported in the journal Angewandte Chemie, Chlorhexidin and Alexidin increase programmed cell death and may be effective against cancers of the mouth and throat.

Sometimes researchers discover that established drugs have other effects in addition to those for which they were actually approved. For example acetylsalicylic acid (Aspirin) has commonly been used to treat pain and fever; more recently, however, it has also been prescribed to thrombosis-prone patients as a blood thinner.

A team headed by Thorsten Berg is now convinced that many low-molecular drugs already in use demonstrate previously unrecognized activity toward interactions between proteins, which may be of therapeutic use.

The team of scientists from the University of Leipzig, the Max Planck Institute for Biochemistry, the Center for Integrated Protein Science Munich, the Helmholtz Center Munich, the Technical University Munich, and the ETH Zurich were out to use a protein–protein interaction relevant for human health to demonstrate the interactions between two proteins whose interaction controls apoptosis, or programmed cell death. Both proteins are from the same protein family. The first protein, Bad, initiates apoptosis-promoting protein to inhibit it.

The researchers proceeded to screen a collection of over 4000 substances known as a compound library. The majority of the compounds in the library are small molecules in clinical use. Binding experiments were used to determine which of the substances inhibit the binding of the two target proteins. To determine the specificity of the "hits", their effects on other protein–protein interactions were also tested.

Berg and his co-workers were successful: Chlorhexidin, the active component in commercial oral disinfectants such as Chlorhexamed, Chlorhexal, Periogard, Corsodyl, and Chlorohex; as well as Alexidin, the active component in Esemdent, both inhibit the binding of the apoptosis inhibitor to the apoptosis trigger. Chlorhexidin's effect is specific, while Alexidin has additional very weak effects on other proteins.

Why are apoptosis proteins interesting? Apoptosis is decreased in tumor cells, so the cells do not die off and continue to divide. One reason for this is that they produce too much of the apoptosis-inhibiting protein. In experiments with cultures of cells from various tongue and throat carcinomas, both compounds caused increased apoptosis. This effect is much stronger in the cancer cells than in healthy cells. It may be possible to use these drugs in therapeutic applications.

The researchers hope to find other protein-protein interactions that could be targeted with approved small-molecule drugs.

About the Author
Dr. Thorsten Berg is Professor for Organic Chemistry and Chemical Biology at the University of Leipzig. His research is focused on the development of new concepts for modulating protein protein interactions by small organic molecules. To do so, his research group utilizes an interdisciplinary approach based on chemical and biological methods.
Author: Thorsten Berg, Universität Leipzig (Germany),
Title: Oral Disinfectants Inhibit Protein–Protein Interactions Mediated by the Anti-Apoptotic Protein Bcl-xL and Induce Apoptosis in Human Oral Tumor Cells

Angewandte Chemie International Edition, Permalink to the article:

Thorsten Berg | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>