Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouthwash to Fight Cancer?

Oral disinfectants induce apoptosis in human oral tumor cells

Patients who suffer from gingivitis are often advised to use disinfectant mouthwashes. In the future, the active ingredients in these products could be used in a completely different area: As scientists have reported in the journal Angewandte Chemie, Chlorhexidin and Alexidin increase programmed cell death and may be effective against cancers of the mouth and throat.

Sometimes researchers discover that established drugs have other effects in addition to those for which they were actually approved. For example acetylsalicylic acid (Aspirin) has commonly been used to treat pain and fever; more recently, however, it has also been prescribed to thrombosis-prone patients as a blood thinner.

A team headed by Thorsten Berg is now convinced that many low-molecular drugs already in use demonstrate previously unrecognized activity toward interactions between proteins, which may be of therapeutic use.

The team of scientists from the University of Leipzig, the Max Planck Institute for Biochemistry, the Center for Integrated Protein Science Munich, the Helmholtz Center Munich, the Technical University Munich, and the ETH Zurich were out to use a protein–protein interaction relevant for human health to demonstrate the interactions between two proteins whose interaction controls apoptosis, or programmed cell death. Both proteins are from the same protein family. The first protein, Bad, initiates apoptosis-promoting protein to inhibit it.

The researchers proceeded to screen a collection of over 4000 substances known as a compound library. The majority of the compounds in the library are small molecules in clinical use. Binding experiments were used to determine which of the substances inhibit the binding of the two target proteins. To determine the specificity of the "hits", their effects on other protein–protein interactions were also tested.

Berg and his co-workers were successful: Chlorhexidin, the active component in commercial oral disinfectants such as Chlorhexamed, Chlorhexal, Periogard, Corsodyl, and Chlorohex; as well as Alexidin, the active component in Esemdent, both inhibit the binding of the apoptosis inhibitor to the apoptosis trigger. Chlorhexidin's effect is specific, while Alexidin has additional very weak effects on other proteins.

Why are apoptosis proteins interesting? Apoptosis is decreased in tumor cells, so the cells do not die off and continue to divide. One reason for this is that they produce too much of the apoptosis-inhibiting protein. In experiments with cultures of cells from various tongue and throat carcinomas, both compounds caused increased apoptosis. This effect is much stronger in the cancer cells than in healthy cells. It may be possible to use these drugs in therapeutic applications.

The researchers hope to find other protein-protein interactions that could be targeted with approved small-molecule drugs.

About the Author
Dr. Thorsten Berg is Professor for Organic Chemistry and Chemical Biology at the University of Leipzig. His research is focused on the development of new concepts for modulating protein protein interactions by small organic molecules. To do so, his research group utilizes an interdisciplinary approach based on chemical and biological methods.
Author: Thorsten Berg, Universität Leipzig (Germany),
Title: Oral Disinfectants Inhibit Protein–Protein Interactions Mediated by the Anti-Apoptotic Protein Bcl-xL and Induce Apoptosis in Human Oral Tumor Cells

Angewandte Chemie International Edition, Permalink to the article:

Thorsten Berg | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>