Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model helps explain gene discovery in congenital heart disease

27.06.2012
Scientists now have clues to how a gene mutation discovered in families affected with congenital heart disease leads to underdevelopment of the walls that separate the heart into four chambers. A Nationwide Children's Hospital study appearing in PLoS Genetics suggests that abnormal development of heart cells during embryogenesis may be to blame.

When babies are born with a hole in their heart (either between the upper or lower chambers), they have a septal defect, the most common form of congenital heart disease. Although it's not clear what causes all septal defects, genetic studies primarily utilizing large families have led to the discovery of several causative genes.

Vidu Garg, MD, the study's lead author, previously reported that a single nucleotide change in the GATA4 gene in humans causes atrial and ventricular septal defects along with pulmonary valve stenosis. In mice, the GATA4 gene has been shown to be necessary for normal heart development and its deletion leads to abnormal heart development.

"While GATA4 has been shown to be important for several critical processes during early heart formation, the mechanism for the heart malformations found in humans with the mutation we previously reported is not well understood," said Dr. Garg, a pediatric cardiologist in The Heart Center and principal investigator in the Center for Cardiovascular and Pulmonary Research at The Research Institute at Nationwide Children's Hospital.

To better characterize the mutation, Dr. Garg and colleagues generated a mouse model harboring the same human disease-causing mutation. They saw heart abnormalities in the mice that were consistent with those seen in humans with GATA4 mutations. Upon further examination, they found that the mutant protein leads to functional deficits in the ability for heart cells to increase in number during embryonic development.

"Our findings suggest that cardiomyocyte proliferation deficits could be a mechanism for the septal defects seen in this mouse model and may contribute to septal defects in humans with mutations in GATA4," said Dr. Garg, also a faculty member at The Ohio State University College of Medicine. "This mouse model will be valuable in studying how septation and heart valve defects arise and serve as a useful tool to study the impact of environmental factors on GATA4 functions during heart development."

Mary Ellen Peacock | EurekAlert!
Further information:
http://www.nationwidechildrens.org/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>