Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse gene suppresses Alzheimer's plaques and tangles

Protein reduces levels of amyloid beta and tau hyperphosphorylation, 2 hallmarks of Alzheimer's

Investigators at Burnham Institute for Medical Research (Burnham) and colleagues have identified a novel mouse gene (Rps23r1) that reduces the accumulation of two toxic proteins that are major players in Alzheimer's disease: amyloid beta and tau.

The amyloid and tau lowering functions of this gene were demonstrated in both human and mouse cells. Amyloid beta is responsible for the plaques found in the brains of Alzheimer's patients. Tau causes the tangles found within patients' brain cells. The study was published in the journal Neuron on November 12. These findings could lead to new treatments for Alzheimer's disease.

Scientists throughout the world are searching for ways to reduce the levels of these two proteins as a means of treating Alzheimer's, so finding a gene that can control the amount of both proteins is particularly important. Overproduction of amyloid beta and its accumulation within senile plaques in the brain and the formation of abnormal tau tangles (neurofibrillary tangles composed of hyperphosphorylated tau protein) are major causes of disrupted brain function in Alzheimer's disease.

Hauxi Xu, Ph.D., professor and acting director of the Neurodegenerative Disease Research program at Burnham, collaborated with Nobel laureate Paul Greengard, Ph.D., of the Laboratory of Molecular and Cellular Neuroscience at The Rockefeller University, Stanley Cohen, Ph.D., of the Department of Genetics at Stanford University School of Medicine, Limin Li, Ph.D., of Functional Genetics, Inc., and with researchers from Xiamen University, to demonstrate that the RPS23R1 protein, which is encoded by the gene, triggers a signaling pathway within brain cells that inhibits a protein called GSK-3 (glycogen synthase kinase-3), which regulates both amyloid beta generation and tau phosphorylation (required for tangle formation).

The team also found that the Rps23r1 gene, whose human counterpart has not yet been identified, was created through a process called retroposition, in which a gene is duplicated through the reverse transcription (or reading) of mRNA and the duplicate is placed in a different location in the cell's DNA. Although most retroposition events result in non-functional duplicates (called pseudogenes) , in rare cases, retroposed genes, like Rps23r1, can become functional.

"From the point of view of treating Alzheimer's disease, if we can express the mouse gene in human brain cells, we may be able to control the buildup of amyloid beta and tau neurofibrillary tangles," said Dr. Xu. "From an evolutionary point of view, we have found an example of a retroposed gene that took on a completely new function."

Dr. Xu and colleagues used a technology called random homozygous gene perturbation to search for genes that regulate amyloid beta generation. This allowed the team to identify the Rps23r1 gene and found that the RPS23R1 protein it encodes can interact with a protein called adenylate cyclase that stimulates a second protein called protein kinase A, which inhibits GSK-3 activity. The effects of RPS23R1 on reducing amyloid beta levels and tau phosphorylation were corroborated in a transgenic Alzheimer's disease mouse model. The team subsequently determined that Rps23r1 is a reverse-transcribed version of the mouse ribosomal protein S23 (Rps23) gene, which is nearly identical to the human Rps23 gene.

About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>