Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Some motor proteins cooperate better than others

Rice University researchers view competition, cooperation among motors in live cells

Rice University researchers have engineered cells to characterize how sensitively altering the cooperative functions of motor proteins can regulate the transport of organelles.

Scientists at Rice University regulated the size of vesicular organelles called peroxisomes and the density of protein motors on their surfaces to analyze how the motors cooperate as they move the vesicles inside cells. The PEX 3/FKBP receptors, when incubated with rapalog, allow transiently expressed kinesin and myosinVa motors to be coupled to vesicle surfaces via FRB protein fusions. Once coupled to the vesicles, the motors pull them along cytoskeleton filaments (bottom). (Credit: Diehl Lab/Rice University)

The study, by the Rice lab of bioengineer and chemist Michael Diehl, compared the collective behaviors of kinesin-1 and myosinVa in living cells to determine how these motor proteins cooperate as they move vesicles and organelles along intracellular highways formed from cytoskeletal filaments. These transport processes are critical to numerous developmental and signaling functions within cells, and breakdowns in motor functions are also implicated in several human diseases.

The work appears this week in the Proceedings of the National Academy of Sciences.

Diehl and his colleagues at Rice’s BioScience Research Collaborative, including Rice postdoctoral researchers Anand Radhakrishan and Artem Efremov and graduate student David Tsao, compared the collective responses of the motor proteins to variations in motor numbers and cargo sizes.

They began with a good understanding of the collective pulling power of kinesin motors. Kinesin is a type of protein that binds to and transports cargoes by walking along cytoskeletal filaments called “microtubules.” In previous experiments, they engineered multiple motor systems that were anchored to polystyrene beads as an experimental cargo, but this time decided to engineer organelles called “peroxisomes” within living cells for these analyses.

“Our earlier work was detailed and very precise, but the central limitation was simply that the motors were not transporting a real cargo,” Diehl said. In contrast to rigid beads, many organelles like peroxisomes have fluid-like lipid membranes. Motors attached to their surfaces will therefore interact in ways that are difficult to recapitulate using plastic beads.

“The physical environment inside a living cell is also difficult to emulate during in-vitro experiments,” he said. “This could also have an appreciable impact on how motors cooperate to transport their cargoes.”

Using genetically engineered COS cells, the team coupled motor proteins to peroxisomes via a certain type of protein switch. They regulated the expression of these protein switch genes in combination with a second gene that allowed them to tune the final density of motors on the surfaces of peroxisomes as well as the distributions of peroxisome sizes.

The genetic-level controls allowed the group to evaluate how the collective behaviors of kinesin and myosinVa motors responded to changes in motor levels and size-dependent forces imposed on the peroxisomes by the cytoplasm. In contrast to behaviors found for kinesins, they show that the cargoes move more rapidly when myosinVa levels are altered and that myosin systems are more readily capable of producing the forces necessary to propel large cargos in living cells.

“Kinesins are like racehorses that basically only know how to run fast,” Diehl said. “They don’t like to work together in teams to transport cargos, and usually one kinesin is left doing the work of transporting a cargo on its own. MyosinVa motors, however, are more like stagecoach horses. If you add more horses, you get more force production. You get more speed. This distinction is important, since it suggests that collective functions of myosinVa can be regulated more sensitively than kinesins.”

Kinesin and myosinVa are bound simultaneously to the surfaces of many organelles, Diehl said. The collective force-producing capacities and responses of cargo transport to variation in motor copy number will influence the trafficking of cargoes to different regions of cells. “Cells needs to be able to regulate that competition, and so it may be useful to have one motor, kinesin, that’s strong individually but not capable of cooperating, and another motor that might be weak individually but have a strong cooperative effect,” he said. “It means all the fine tuning can take place on one side.”

The overall results open a new window into cellular mechanisms, Diehl said. “Now that we’re able to probe detailed relationships between motor type, ratio, cargo size and force, we can start to examine more complicated collective and regulatory behaviors directly,” he said. “We hope to recapitulate scenarios where multiple normal motors are bound to the surfaces of cargoes simultaneously with motor mutants that have been associated with neurodegenerative diseases. This way, we can precisely examine how these mutants perturb intracellular transport pathways.”

Co-authors of the paper include Carol Bookwalter, a staff member, and Kathleen Trybus, a professor of molecular physiology and biophysics at the University of Vermont.

The Welch Foundation and the National Institutes of Health supported the research.

Jeff Falk | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Experimental drug ameliorates symptoms of neurodegenerative brain disease in mice
09.10.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Using optical fiber to generate a two-micron laser

09.10.2015 | Process Engineering

Sea turtles face plastic pollution peril

09.10.2015 | Ecology, The Environment and Conservation

Antioxidants cause malignant melanoma to metastasize faster

09.10.2015 | Health and Medicine

More VideoLinks >>>