Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Moth and the Air Freshener: The Secrets of Scent

UA Regents' Professor John G. Hildebrand has been elected to the Council of the National Academy of Sciences. In addition, he is being honored for his lifetime accomplishments on how olfaction, the sense of smell, influences the behavior of animals, from bugs to humans.
"From an early age, I was fascinated by what I could smell and how I reacted to it and by how flavor works and things like that," said John G.

Hildebrand, a Regents' Professor in the University of Arizona's department of neuroscience. "And I was fascinated by insects."

His childhood interests would lead him into a life-long career dedicated to figuring out how insects perceive taste and smell, how their brains process them and how they elicit certain behavioral responses.

Hildebrand has been elected to serve on the Council of the National Academy of Sciences, after having been a member of the academy for almost five years. Election to membership in the academy is considered one of the highest honors a U.S. scientist or engineer can achieve.

"I was surprised enough to be nominated," Hildebrand said. "It was even more surprising and flattering to be elected, and I'm still stunned by it."

The appointment to the council, the academy's governing body, is for three years, starting July 1, and is a "working assignment, not an honorific one," he said. "The academy has to govern its own business, has to run its own finances and has to raise its own money."

Big plans lie ahead. Hildebrand said the academy is seeking to "increase its diversity in the broadest sense, not just in terms of racial, ethnic and gender diversity, but toward a more diverse geographical representation and underrepresented areas."

Goals include expanding the number of eligible scientific disciplines, electing younger scientists and strengthening international liaisons in a scientific arena that is becoming ever more global.

Hildebrand said he is especially excited about his appointment because it underscores and elevates the UA's recognition.

For his lifelong accomplishments in unraveling chemical senses, Hildebrand will receive the Max Mozell Award for Outstanding Achievement in the Chemical Senses from the Association for Chemoreception Sciences, or AChemS, at the association's annual meeting later this year. The award is named for the founder of AChemS, which has become the world's leading professional society devoted to the sciences of smell and taste.

"In academia, I think one of the highest kinds of rewards you can get is to know that your colleagues and peers think well of what you do,"

Hildebrand said. "Chemical senses such as smell and taste are important areas of sensory neuroscience and behavior because they play a very important role in our well-being and our enjoyment of life."

The ability to smell is important, like the ability to feel pain, Hildebrand said. "If you can't sense pain, you can burn yourself badly. If you can't smell properly, you can be asphyxiated by gas. It's important in those ways but it's also fascinating because of all the things we eat and drink and enjoy. Much of it hinges on our chemical senses."

He credits his father, a "scientific polymath interested in everything under the sun," with sparking his interest in taste and smell.

"My father was a very influential person to me. He was an expert in natural products chemistry, particularly flavor and fragrance chemistry.

When I was a little kid, he used to come home from work with samples of novel perfumes or unmarked packages of chewing gum that had test flavors in them. I'd give them out to my friends for free if they just told us which ones they liked best. I made a lot of friends that way."

Combining his interests in insects and the chemical senses, Hildebrand began to study olfactory systems and sensory information processing as a young faculty member.

"We wanted to know what shaped the evolution of these systems and what they are trying to cope with," he said. "Let me give you an example."

"If you are a coffee drinker, you only need to take a whiff from a steaming cup to know that it's coffee. And if you're a real coffee drinker, you know right off from that one whiff whether it's a dark roast or light roast, or whether it's been sitting on the hot plate for a long time. You know a lot about that cup of coffee."

He explained that a whiff of coffee ­ which olfactory scientists call "headspace" ­ is made up of roughly 800 chemical compounds, depending on the brew and the roast and so forth.

"It's a very complex mixture, and for a chemist to identify 800 or more compounds and quantify them would take all the most powerful tools we have, such as mass spectrometry and, most importantly, weeks of work. But you take one whiff, and you have a lot of information."

"Isn't the fact that you can recognize a very complex pattern like that and distinguish it from a different, similarly complex pattern of a different brew or a different roast or a different age, amazing? How do we deal with something that complex?"

Enter the hawkmoth Manduca sexta, also known as the tobacco hornworm moth, whose habitat includes Southern Arizona, where it sucks nectar from Datura flowers at night and pollinates them in the process, lured by the flowers'


Hildebrand pioneered the animal as a model organism for studying the organization of insects' sense of smell. Adult moths have a wingspan of about four inches and relatively large brains, making them much easier to study than smaller insects.

Female hawkmoths release their sex pheromone with a specialized organ that works not unlike an Air Wick® air freshener. Male moths pick up the scent plume and follow it to locate their mating partners.

"The beauty of the Manduca pheromone system is that there are only two compounds that matter to the male to find the female. Two components is the simplest possible mixture to make a scent."

Studying exactly how that pheromone mixture unlocks the mating behavior in the hawkmoths, Hildebrand's research team has gained insights into the fundamental neural mechanisms that organisms use to recognize scents, how their brains process them and how they trigger certain types of behavior.

They even discovered that moths can be trained to respond to artificial odors they have never encountered in nature.

"People think of moths as dumb because they crash into our porch lights at night, but in fact they learn as well as honey bees do," Hildebrand said.

"They're amazing."

The latest contribution to the field of olfactory neuroscience coming out of the Hildebrand lab is preliminary evidence that certain neurons fire at the same time to encode the significance of a behaviorally meaningful odor mixture.

Hildebrand joined the UA faculty in 1985 to establish and direct the division of neurobiology, part of the UA's Arizona Research Laboratories devoted to insect neurobiology and behavior. That unit recently became the department of neuroscience in the College of Science. He also led the creation of the university-wide Graduate Interdisciplinary Program in Neuroscience, launched in 1988.

He also is an elected fellow of the American Association for the Advancement of Science (1986); an elected member of the German National Academy of Sciences ŒLeopoldina' ­ the oldest academy of sciences in the world (1998); an elected Foreign Member in the Norwegian Academy of Science and Letters (1999); and an elected member of the American Academy of Arts and Sciences (2001). He holds an honorary doctorate from the University of Cagliari, Italy (2000).

Hildebrand earned his bachelor's degree in biology at Harvard College in
1964 and his doctorate in biochemistry at Rockefeller University in 1969.
Before coming to Arizona, he was on the faculty at Columbia University (1980-85), Rockefeller University (1981-86) and Harvard Medical School (1970-80).

He also served as a trustee (1981-89) and member of the executive committee (1982-88) of the Marine Biological Laboratory in Woods Hole, as a trustee of Rockefeller University (1970-73) and as associate in behavioral biology in the Harvard University Museum of Comparative Zoology (1980-97).

The National Academy of Sciences is a private organization of scientists and engineers dedicated to the furtherance of science and its use for the general welfare. It was established in 1863 by a congressional act of incorporation signed by Abraham Lincoln that calls on the academy to act as an official adviser to the federal government, upon request, in any matter of science or technology.


John Hildebrand's faculty webpage:
UA Department of Neuroscience:
National Academy of Sciences:
John G. Hildebrand
Department of Neuroscience
The University of Arizona
Daniel Stolte
University Communications
The University of Arizona

Daniel Stolte | University of Arizona
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>