Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss as a pioneer of water conservation

31.03.2015

When during evolution did plants learn to conserve water? The first attempts in this regard have been discovered by an international research team with a moss. The findings also revealed how evolution affects molecules.

The first plants to venture out of the sea and onto land 500 million years ago were green algae. They had to cope with the fact that they were no longer constantly surrounded by water. This meant that they ran the serious risk of withering slowly in the event of a drought.


The moss Physcomitrella patens was a pioneer in water conservation matters during evolution.

(Photo: Pirex / Wikimedia Commons)


In the moss Physcomitrella patens, the anion channel SLAC1 first came under the control of the drought stress-dependent enzyme OST1.

(Photo: Department of Botany I, University of Würzburg)

A later generation of terrestrial plants, mosses, resolved this problem quite cleverly: If water is in short supply, they do dry out slowly but as soon as they come into contact with water once more their photosynthesis starts up again and they continue to grow. Mosses manage to do this because they acquired a tolerance to dessication during their evolution as a land dweller.

Enzyme OST1 has a key function

Mosses, like all other plants, produce the stress hormone abscisic acid (ABA) when a water shortage occurs. This in turn boosts the production of special proteins that protect it from drying out, known as dehydrins. These ensure that the mosses survive a period of drought without any major loss of function. The production of these dehydrins is particularly reliant on, among other things, the enzyme OST1.

Even with more highly evolved plants, this enzyme ensures that excessive water loss is avoided. However, it does not just do that here via anti-dessication proteins, but using a second path as well: It activates the anion channel SLAC1 of the guard cells in the plant’s epidermis. Thereupon, the guard cells close the pores through which vital carbon dioxide flows into the plant, but through which water is also lost to the environment.

When did guard cells first appear during evolution? The first land-dwelling algae and also the relatively simple liverwort do not yet possess any. It is only with the more highly evolved mosses that guard cells appear, albeit only sparsely still: They are only located on a pinhead-like structure that the moss uses to disseminate its spores.

Results published in “Current Biology”

When during evolution did plants learn to control the production of dehydrins using the enzyme OST1? And when did they begin to use this enzyme to activate the anion channel of the guard cells? These questions have been answered by Würzburg plant biologists Dietmar Geiger and Rainer Hedrich with counterparts from Freiburg, Madrid, Riyadh, Uppsala, Kyoto, and West Lafayette. Their findings have been published in the journal “Current Biology”.

The researchers compared OST1 enzymes and SLAC1 channels from four different highly evolved plants: They examined the terrestrial alga Klebsormidium nitens, the common liverwort Marchantia polymorpha, the moss Physcomitrella patens, and the thale cress Arabidopsis thaliana as a representative of more highly evolved plants.

Structure of the anion channel proved decisive

It emerged that all OST1 variants do not differ markedly in their gene sequence and that they can all boost the production of dehydrins. Likewise, all OST1 variants can activate the anion channel of the thale cress. Yet, they failed with the channels of the alga and liverwort. The key to water conservation must therefore lie in the structure of the channel.

With the moss examined, which is younger in developmental history terms than the liverwort, the scientists discovered something unusual: It possesses two forms of anion channel, and one of them reacts already to OST1 – albeit very weakly. If the second, fully inactive channel is modified based on the model of the OST1-sensitive channels, it becomes increasingly active.

As a result, the research team has shown that even very early on during evolution OST1 had matured to such an extent that it is able to control dehydrin production. On the other hand, the channel SLAC1 did not acquire the ability to react to OST1 until moss emerged. “Evolution played with the structure of the channel and with its function until such time as it could be controlled by the existing ABA dehydrin signalling pathway and could assume the task of being a water conservation button,” says Hedrich.

Search for a further evolutionary playground

Does this mean that the question of the evolution of water conservation has been answered? Not yet, believes the Würzburg professor: “The guard cells of the mosses and of the later ferns react only weakly, if at all, to the water stress hormone ABA. We therefore need to examine yet when, on the path to becoming a highly evolved flowering plant, all the functional components of the ABA-dependent signalling pathway gathered in the guard cells. We presume that the playground for the optimization of this path lies in the transition from ferns to early flowering plants.”

Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure, Christof Lind, Ingo Dreyer, Enrique J. López-Sanjurjo, Katharina von Meyer, Kimitsune Ishizaki, Takayuki Kohchi, Daniel Lang, Yang Zhao, Ines Kreuzer, Khaled A.S. Al-Rasheid, Hans Ronne, Ralf Reski, Jian-Kang Zhu, Dietmar Geiger, and Rainer Hedrich, Current Biology, published online on March 19, 2015, http://www.cell.com/current-biology/abstract/S0960-9822%2815%2900131-1

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I (Plant Physiology and Biophysics), University of Würzburg, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>