Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mosquitoes Create Harmonic Love Song Before Mating

That pesky buzz of a nearby mosquito is the sound of love, scientists have known for some time. But a new Cornell study reports that males and females flap their wings and change their tune to create a harmonic duet just before mating.

Cornell entomologists have discovered that male and female mosquitoes (Aedes aegypti), which can spread such diseases as yellow and dengue fevers, "interact acoustically with each other when the two are within earshot -- a few centimeters of each other," said Ron Hoy, professor of neurobiology and behavior.

The study is available online today (Jan. 8) and will be published in a February issue of Science, said Cornell associate professor of entomology and mosquito expert Laura Harrington, a co-senior author on the study with Hoy.

"The frequency at which males and females converge is a harmonic or multiple of their wing-beat frequencies, which is approximately 400 hertz [vibrations per second] for the female and 600 hertz for the male," said Hoy.

The mating duet, generated just before the couple mates on the fly, settles at around 1,200 hertz -- roughly an octave and a half above concert A (the pitch to which instruments are tuned -- the A that has a frequency of 440 hertz and is above middle C). "That is significantly higher than what was previously thought to be mosquitoes' upper hearing limit," he added.

Interestingly, the mosquitoes adjust the harmonic resonance of their thoracic box to produce a harmonic frequency that converges at a frequency that is the female's third harmonic (three times her fundamental frequency) and the male's second harmonic (two times his fundamental frequency). The study also is the first to definitively show that contrary to previous thought, female mosquitoes are not deaf.

To study mosquito mating calls, the researchers tethered mosquitoes and flew them past each other while recording the flight tones with a special microphone. Co-first author Benjamin Arthur, a postdoctoral researcher in Hoy's laboratory, placed electrodes in the mosquitoes' auditory organ in their antennae during playback to measure physiological responses of the mosquitoes to the sounds of potential mates.

The researchers hope that their work will provide new ways to better control of mosquito populations in places where yellow and dengue fevers are significant problems.

"By studying these flight tone signals, we may be able to determine what kind of information males and females consider important when choosing a mate," said co-first author Lauren Cator, a Cornell graduate student who works with Harrington. "This will allow us to release 'sexy' transgenic or sterilized males that will be able to successfully compete with wild populations."

Dengue fever affects 50 million people annually, and two-thirds of the world's population is at risk. In recent years, it has reached epidemic levels in Asia, South and Central America and Mexico, where the number of dengue cases has increased by more than 300 percent from year to year. No dengue vaccine is available, and no treatment exists beyond supportive care.

The study was funded by the U.S. Department of Agriculture and by a $19.7 million Foundation for the National Institutes of Health grant awarded to Harrington and a global team of scientists to cure dengue fever and control the mosquitoes that transmit the viruses that cause it.

Blaine Friedlander | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>