Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquitoes Create Harmonic Love Song Before Mating

12.01.2009
That pesky buzz of a nearby mosquito is the sound of love, scientists have known for some time. But a new Cornell study reports that males and females flap their wings and change their tune to create a harmonic duet just before mating.

Cornell entomologists have discovered that male and female mosquitoes (Aedes aegypti), which can spread such diseases as yellow and dengue fevers, "interact acoustically with each other when the two are within earshot -- a few centimeters of each other," said Ron Hoy, professor of neurobiology and behavior.

The study is available online today (Jan. 8) and will be published in a February issue of Science, said Cornell associate professor of entomology and mosquito expert Laura Harrington, a co-senior author on the study with Hoy.

"The frequency at which males and females converge is a harmonic or multiple of their wing-beat frequencies, which is approximately 400 hertz [vibrations per second] for the female and 600 hertz for the male," said Hoy.

The mating duet, generated just before the couple mates on the fly, settles at around 1,200 hertz -- roughly an octave and a half above concert A (the pitch to which instruments are tuned -- the A that has a frequency of 440 hertz and is above middle C). "That is significantly higher than what was previously thought to be mosquitoes' upper hearing limit," he added.

Interestingly, the mosquitoes adjust the harmonic resonance of their thoracic box to produce a harmonic frequency that converges at a frequency that is the female's third harmonic (three times her fundamental frequency) and the male's second harmonic (two times his fundamental frequency). The study also is the first to definitively show that contrary to previous thought, female mosquitoes are not deaf.

To study mosquito mating calls, the researchers tethered mosquitoes and flew them past each other while recording the flight tones with a special microphone. Co-first author Benjamin Arthur, a postdoctoral researcher in Hoy's laboratory, placed electrodes in the mosquitoes' auditory organ in their antennae during playback to measure physiological responses of the mosquitoes to the sounds of potential mates.

The researchers hope that their work will provide new ways to better control of mosquito populations in places where yellow and dengue fevers are significant problems.

"By studying these flight tone signals, we may be able to determine what kind of information males and females consider important when choosing a mate," said co-first author Lauren Cator, a Cornell graduate student who works with Harrington. "This will allow us to release 'sexy' transgenic or sterilized males that will be able to successfully compete with wild populations."

Dengue fever affects 50 million people annually, and two-thirds of the world's population is at risk. In recent years, it has reached epidemic levels in Asia, South and Central America and Mexico, where the number of dengue cases has increased by more than 300 percent from year to year. No dengue vaccine is available, and no treatment exists beyond supportive care.

The study was funded by the U.S. Department of Agriculture and by a $19.7 million Foundation for the National Institutes of Health grant awarded to Harrington and a global team of scientists to cure dengue fever and control the mosquitoes that transmit the viruses that cause it.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Jan09/mosquitoLovesongs.sl.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>