Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquitoes Create Harmonic Love Song Before Mating

12.01.2009
That pesky buzz of a nearby mosquito is the sound of love, scientists have known for some time. But a new Cornell study reports that males and females flap their wings and change their tune to create a harmonic duet just before mating.

Cornell entomologists have discovered that male and female mosquitoes (Aedes aegypti), which can spread such diseases as yellow and dengue fevers, "interact acoustically with each other when the two are within earshot -- a few centimeters of each other," said Ron Hoy, professor of neurobiology and behavior.

The study is available online today (Jan. 8) and will be published in a February issue of Science, said Cornell associate professor of entomology and mosquito expert Laura Harrington, a co-senior author on the study with Hoy.

"The frequency at which males and females converge is a harmonic or multiple of their wing-beat frequencies, which is approximately 400 hertz [vibrations per second] for the female and 600 hertz for the male," said Hoy.

The mating duet, generated just before the couple mates on the fly, settles at around 1,200 hertz -- roughly an octave and a half above concert A (the pitch to which instruments are tuned -- the A that has a frequency of 440 hertz and is above middle C). "That is significantly higher than what was previously thought to be mosquitoes' upper hearing limit," he added.

Interestingly, the mosquitoes adjust the harmonic resonance of their thoracic box to produce a harmonic frequency that converges at a frequency that is the female's third harmonic (three times her fundamental frequency) and the male's second harmonic (two times his fundamental frequency). The study also is the first to definitively show that contrary to previous thought, female mosquitoes are not deaf.

To study mosquito mating calls, the researchers tethered mosquitoes and flew them past each other while recording the flight tones with a special microphone. Co-first author Benjamin Arthur, a postdoctoral researcher in Hoy's laboratory, placed electrodes in the mosquitoes' auditory organ in their antennae during playback to measure physiological responses of the mosquitoes to the sounds of potential mates.

The researchers hope that their work will provide new ways to better control of mosquito populations in places where yellow and dengue fevers are significant problems.

"By studying these flight tone signals, we may be able to determine what kind of information males and females consider important when choosing a mate," said co-first author Lauren Cator, a Cornell graduate student who works with Harrington. "This will allow us to release 'sexy' transgenic or sterilized males that will be able to successfully compete with wild populations."

Dengue fever affects 50 million people annually, and two-thirds of the world's population is at risk. In recent years, it has reached epidemic levels in Asia, South and Central America and Mexico, where the number of dengue cases has increased by more than 300 percent from year to year. No dengue vaccine is available, and no treatment exists beyond supportive care.

The study was funded by the U.S. Department of Agriculture and by a $19.7 million Foundation for the National Institutes of Health grant awarded to Harrington and a global team of scientists to cure dengue fever and control the mosquitoes that transmit the viruses that cause it.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Jan09/mosquitoLovesongs.sl.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>