Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moonwalker flies backing up

03.04.2014

Researchers at the Institute of Molecular Pathology (IMP) in Vienna identify brain cells that control backward walking in fruit flies

The team of Barry Dickson, former scientific director of the IMP, managed to isolate “moonwalker flies” in a high-throughput screen. Screening a large collection of fruit flies, the scientists found specimens that seemed locked in reverse gear. Dickson and his co-workers were able to trace these changes in walking direction back to the activity of specific neurons in the brain. The results of the study will be published in the current issue of Science.


The picture depicts two neurons, MDN (Moonwalker Descending Neuron) and MAN (Moonwalker Ascending Neuron), that in the course of the study were found to be implicated in backward walking. The figure shows segmented representations of these neurons mapped onto a common template fly brain.

Picture: IMP, courtesy of the journal Science/AAAS

Most land animals walk forward by default, but can switch to backward walking when they sense an obstacle or danger in the path ahead. The impulse to change walking direction is likely to be transmitted by descending neurons of the brain that control local motor circuits within the central nervous system. This neuronal input can change walking direction by adjusting the order or timing of individual leg movements.

Screening for flies with altered walking patterns

... more about:
»IMP »Molecular »Pathology »activity »flies »mechanisms »neural »neurons »walk

In the current study, Dickson and his team aimed to understand the fly’s change in walking direction at the cellular level. Using a novel technology known as thermogenetics, they were able to identify the neurons in the brain that cause a change in locomotion. Their studies involved screening large numbers of flies with it which specific neurons were activated by heat, producing certain behaviors only when warmed to 30°C, but not at 24°C . Analysing several thousand flies, the researchers looked for strains that exhibited altered walking patterns compared to control animals.

Moonwalker-neurons control backward walking

Using the thermogenetic screen, the IMP-researchers isolated four lines of flies that walked backward on heat activation. They were able to track down these changes to specific nerve cells in the fly brain which they dubbed „moonwalker neurons“. They could also show that silencing the activity of these neurons using tetanus toxin rendered the flies unable to walk backward.

Among the moonwalker neurons, the activity of descending MDN-neurons is required for flies to walk backward when they encounter an obstacle. Input from MDN brain cells is sufficient to induce backward walking in flies that would otherwise walk forward. Ascending moonwalker neurons (MAN) promote persistent backward walking, possibly by inhibiting forward walking.

“This is the first identification of specific neurons that carry the command for the switch in walking direction of an insect”, says Salil Bidaye, lead author of the study. “Our findings provide a great entry point into the entire walking circuit of the fly. “

Although there are obvious differences in how insects and humans walk, it is likely that there are functional analogies at a neural circuit level. Insights into the neural basis of insect walking could also generate applications in the field of robotics. To date, none of the engineered robots that are used for rescue or exploration missions can walk as robustly as animals. Understanding how insects change their walking direction at a neuronal level would reveal the mechanistic basis of achieving such robust walking behavior. 

Original Publication
The paper “Neuronal Control of Drosophila Walking Direction” by Salil S. Bidaye, Christian Machacek, Yang Wu and Barry Dickson is published in SCIENCE on 3 April, 2014.

Illustration & Videos
An illustration and videos to be used free of charge in connection with this press release can be downloaded from the IMP website: www.imp.ac.at/pressefoto-moonwalk

About Barry Dickson
Barry Dickson studied mathematics, computer science and genetics at the Universities of Melbourne and Queensland, Australia. After two years as a research assistant at the Salk Institute, San Diego, he moved to Zurich to work towards his PhD with Ernst Hafen at the University of Zurich, Switzerland. For his postdoctoral research, he joined Corey Goodman at the University of California in Berkeley. In 1998, Dickson joined the IMP in Vienna as Group Leader, and in 2006 was appointed Scientific Director of the institute. Since 2013, Barry Dickson is a Group Leader at the Janelia Farm Research Campus of the Howard Hughes Medical Institute.

About Salil Bidaye
Salil Bidaye received his Integrated Masters in Biotechnology from the University of Pune, India. From 2008 until 2013, he was a doctoral student at the Research Institute of Molecular Pathology in Vienna and received his PhD from the University of Vienna. At present, Salil Bidaye is a Postdoctoral Scholar at the Department of Molecular and Cell Biology of the University of California, Berkeley.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Dr. Heidemarie Hurtl
Communications
IMP Research Institute of Molecular Pathology
Phone: +43 (0)664 8247910
E-mail: hurtl@imp.ac.at

Weitere Informationen:

http://www.imp.ac.at/pressefoto-moonwalk

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molecular Pathology activity flies mechanisms neural neurons walk

More articles from Life Sciences:

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

nachricht How to make chromosomes from DNA
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Carbon sink” detected underneath world’s deserts

29.07.2015 | Earth Sciences

Switch for building barrier in roots

29.07.2015 | Life Sciences

Mechanism of an enzyme for biofuel production

29.07.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>