Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moonwalker flies backing up


Researchers at the Institute of Molecular Pathology (IMP) in Vienna identify brain cells that control backward walking in fruit flies

The team of Barry Dickson, former scientific director of the IMP, managed to isolate “moonwalker flies” in a high-throughput screen. Screening a large collection of fruit flies, the scientists found specimens that seemed locked in reverse gear. Dickson and his co-workers were able to trace these changes in walking direction back to the activity of specific neurons in the brain. The results of the study will be published in the current issue of Science.

The picture depicts two neurons, MDN (Moonwalker Descending Neuron) and MAN (Moonwalker Ascending Neuron), that in the course of the study were found to be implicated in backward walking. The figure shows segmented representations of these neurons mapped onto a common template fly brain.

Picture: IMP, courtesy of the journal Science/AAAS

Most land animals walk forward by default, but can switch to backward walking when they sense an obstacle or danger in the path ahead. The impulse to change walking direction is likely to be transmitted by descending neurons of the brain that control local motor circuits within the central nervous system. This neuronal input can change walking direction by adjusting the order or timing of individual leg movements.

Screening for flies with altered walking patterns

... more about:
»IMP »Molecular »Pathology »activity »flies »mechanisms »neural »neurons »walk

In the current study, Dickson and his team aimed to understand the fly’s change in walking direction at the cellular level. Using a novel technology known as thermogenetics, they were able to identify the neurons in the brain that cause a change in locomotion. Their studies involved screening large numbers of flies with it which specific neurons were activated by heat, producing certain behaviors only when warmed to 30°C, but not at 24°C . Analysing several thousand flies, the researchers looked for strains that exhibited altered walking patterns compared to control animals.

Moonwalker-neurons control backward walking

Using the thermogenetic screen, the IMP-researchers isolated four lines of flies that walked backward on heat activation. They were able to track down these changes to specific nerve cells in the fly brain which they dubbed „moonwalker neurons“. They could also show that silencing the activity of these neurons using tetanus toxin rendered the flies unable to walk backward.

Among the moonwalker neurons, the activity of descending MDN-neurons is required for flies to walk backward when they encounter an obstacle. Input from MDN brain cells is sufficient to induce backward walking in flies that would otherwise walk forward. Ascending moonwalker neurons (MAN) promote persistent backward walking, possibly by inhibiting forward walking.

“This is the first identification of specific neurons that carry the command for the switch in walking direction of an insect”, says Salil Bidaye, lead author of the study. “Our findings provide a great entry point into the entire walking circuit of the fly. “

Although there are obvious differences in how insects and humans walk, it is likely that there are functional analogies at a neural circuit level. Insights into the neural basis of insect walking could also generate applications in the field of robotics. To date, none of the engineered robots that are used for rescue or exploration missions can walk as robustly as animals. Understanding how insects change their walking direction at a neuronal level would reveal the mechanistic basis of achieving such robust walking behavior. 

Original Publication
The paper “Neuronal Control of Drosophila Walking Direction” by Salil S. Bidaye, Christian Machacek, Yang Wu and Barry Dickson is published in SCIENCE on 3 April, 2014.

Illustration & Videos
An illustration and videos to be used free of charge in connection with this press release can be downloaded from the IMP website:

About Barry Dickson
Barry Dickson studied mathematics, computer science and genetics at the Universities of Melbourne and Queensland, Australia. After two years as a research assistant at the Salk Institute, San Diego, he moved to Zurich to work towards his PhD with Ernst Hafen at the University of Zurich, Switzerland. For his postdoctoral research, he joined Corey Goodman at the University of California in Berkeley. In 1998, Dickson joined the IMP in Vienna as Group Leader, and in 2006 was appointed Scientific Director of the institute. Since 2013, Barry Dickson is a Group Leader at the Janelia Farm Research Campus of the Howard Hughes Medical Institute.

About Salil Bidaye
Salil Bidaye received his Integrated Masters in Biotechnology from the University of Pune, India. From 2008 until 2013, he was a doctoral student at the Research Institute of Molecular Pathology in Vienna and received his PhD from the University of Vienna. At present, Salil Bidaye is a Postdoctoral Scholar at the Department of Molecular and Cell Biology of the University of California, Berkeley.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Dr. Heidemarie Hurtl
IMP Research Institute of Molecular Pathology
Phone: +43 (0)664 8247910

Weitere Informationen:

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molecular Pathology activity flies mechanisms neural neurons walk

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Plant Defense as a Biotech Tool

25.11.2015 | Life Sciences

“move“ – on course for the mobility of the future

25.11.2015 | Power and Electrical Engineering

Understanding a missing link in how antidepressants work

25.11.2015 | Life Sciences

More VideoLinks >>>