Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moonwalker flies backing up

03.04.2014

Researchers at the Institute of Molecular Pathology (IMP) in Vienna identify brain cells that control backward walking in fruit flies

The team of Barry Dickson, former scientific director of the IMP, managed to isolate “moonwalker flies” in a high-throughput screen. Screening a large collection of fruit flies, the scientists found specimens that seemed locked in reverse gear. Dickson and his co-workers were able to trace these changes in walking direction back to the activity of specific neurons in the brain. The results of the study will be published in the current issue of Science.


The picture depicts two neurons, MDN (Moonwalker Descending Neuron) and MAN (Moonwalker Ascending Neuron), that in the course of the study were found to be implicated in backward walking. The figure shows segmented representations of these neurons mapped onto a common template fly brain.

Picture: IMP, courtesy of the journal Science/AAAS

Most land animals walk forward by default, but can switch to backward walking when they sense an obstacle or danger in the path ahead. The impulse to change walking direction is likely to be transmitted by descending neurons of the brain that control local motor circuits within the central nervous system. This neuronal input can change walking direction by adjusting the order or timing of individual leg movements.

Screening for flies with altered walking patterns

... more about:
»IMP »Molecular »Pathology »activity »flies »mechanisms »neural »neurons »walk

In the current study, Dickson and his team aimed to understand the fly’s change in walking direction at the cellular level. Using a novel technology known as thermogenetics, they were able to identify the neurons in the brain that cause a change in locomotion. Their studies involved screening large numbers of flies with it which specific neurons were activated by heat, producing certain behaviors only when warmed to 30°C, but not at 24°C . Analysing several thousand flies, the researchers looked for strains that exhibited altered walking patterns compared to control animals.

Moonwalker-neurons control backward walking

Using the thermogenetic screen, the IMP-researchers isolated four lines of flies that walked backward on heat activation. They were able to track down these changes to specific nerve cells in the fly brain which they dubbed „moonwalker neurons“. They could also show that silencing the activity of these neurons using tetanus toxin rendered the flies unable to walk backward.

Among the moonwalker neurons, the activity of descending MDN-neurons is required for flies to walk backward when they encounter an obstacle. Input from MDN brain cells is sufficient to induce backward walking in flies that would otherwise walk forward. Ascending moonwalker neurons (MAN) promote persistent backward walking, possibly by inhibiting forward walking.

“This is the first identification of specific neurons that carry the command for the switch in walking direction of an insect”, says Salil Bidaye, lead author of the study. “Our findings provide a great entry point into the entire walking circuit of the fly. “

Although there are obvious differences in how insects and humans walk, it is likely that there are functional analogies at a neural circuit level. Insights into the neural basis of insect walking could also generate applications in the field of robotics. To date, none of the engineered robots that are used for rescue or exploration missions can walk as robustly as animals. Understanding how insects change their walking direction at a neuronal level would reveal the mechanistic basis of achieving such robust walking behavior. 

Original Publication
The paper “Neuronal Control of Drosophila Walking Direction” by Salil S. Bidaye, Christian Machacek, Yang Wu and Barry Dickson is published in SCIENCE on 3 April, 2014.

Illustration & Videos
An illustration and videos to be used free of charge in connection with this press release can be downloaded from the IMP website: www.imp.ac.at/pressefoto-moonwalk

About Barry Dickson
Barry Dickson studied mathematics, computer science and genetics at the Universities of Melbourne and Queensland, Australia. After two years as a research assistant at the Salk Institute, San Diego, he moved to Zurich to work towards his PhD with Ernst Hafen at the University of Zurich, Switzerland. For his postdoctoral research, he joined Corey Goodman at the University of California in Berkeley. In 1998, Dickson joined the IMP in Vienna as Group Leader, and in 2006 was appointed Scientific Director of the institute. Since 2013, Barry Dickson is a Group Leader at the Janelia Farm Research Campus of the Howard Hughes Medical Institute.

About Salil Bidaye
Salil Bidaye received his Integrated Masters in Biotechnology from the University of Pune, India. From 2008 until 2013, he was a doctoral student at the Research Institute of Molecular Pathology in Vienna and received his PhD from the University of Vienna. At present, Salil Bidaye is a Postdoctoral Scholar at the Department of Molecular and Cell Biology of the University of California, Berkeley.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Dr. Heidemarie Hurtl
Communications
IMP Research Institute of Molecular Pathology
Phone: +43 (0)664 8247910
E-mail: hurtl@imp.ac.at

Weitere Informationen:

http://www.imp.ac.at/pressefoto-moonwalk

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molecular Pathology activity flies mechanisms neural neurons walk

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>