Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey brains signal the desire to explore

08.09.2009
Sticking with what you know often comes at the price of learning about more favorable alternatives.

Managing this trade-off is easy for many, but not for those with conditions such as Alzheimer's disease or obsessive-compulsive disorder who are trapped in simple routines.

Using brain scans in monkeys, Duke University Medical Center researchers are now able to predict when monkeys will switch from exploiting a known resource to exploring their options.

"Humans aren't the only animals who wonder if the grass is greener elsewhere, but it's hard to abandon what we know in hopes of finding something better," said John Pearson, Ph.D., research associate in the Duke Department of Neurobiology and lead author of a study published in this week's Current Biology.

"Studies like this one help reveal how the brain weighs costs and benefits in making that kind of decision," Pearson said. "We suspect that such a fundamental question engages many areas of the brain, but this is one of the first studies to show how individual neurons can carry signals for these kinds of strategic decisions."

The researchers looked at how nerve cells fired in a part of the brain known as the posterior cingulate cortex as the monkeys were offered a selection of rewards. Generally, these neurons fired more strongly when monkeys decided to explore new alternatives.

The monkeys started with four rewards to choose from, each a 200 microliter cup of juice. After that, the four targets began to slowly change in value, becoming larger or smaller. The monkeys were free to explore the other targets or stay with the initial target, whose value they knew for certain. Monkeys had to select an option to learn its current value and integrate this information with their knowledge of the chances of getting more juice at a different target.

By studying the individual neurons, the researchers could predict which strategy the monkey would employ.

"These data are interesting from a human health perspective, because the posterior cingulate cortex is the most metabolically active part of the brain when we are daydreaming or thinking to ourselves, and it is also one of the first parts of the brain to show damage in Alzheimer's disease," said Michael Platt, Ph.D., professor of neurobiology and evolutionary anthropology at Duke and senior author of the study.

"People with Alzheimer's become set in their ways and don't explore as much, which may be because this part of the brain is damaged," Platt said. "Likewise, in people with obsessive-compulsive disorder, they can become fixed on certain activities or patterns of activity and can't disengage from them, which may also relate to changes in this part of the brain that renders them mentally unable to switch gears between exploring and exploiting."

More research is needed to learn about how this part of the brain functions, which might be crucial to the flexible adaptation of strategy in response to changing environments, Pearson said.

Other authors include Benjamin Y. Hayden and Sridhar Raghavachari of the Duke Department of Neurobiology. This work was supported by a National Institute on Drug Abuse postdoctoral fellowship, a National Institutes of Health grant, and the Duke Institute for Brain Studies.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>