Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monkey brains signal the desire to explore

Sticking with what you know often comes at the price of learning about more favorable alternatives.

Managing this trade-off is easy for many, but not for those with conditions such as Alzheimer's disease or obsessive-compulsive disorder who are trapped in simple routines.

Using brain scans in monkeys, Duke University Medical Center researchers are now able to predict when monkeys will switch from exploiting a known resource to exploring their options.

"Humans aren't the only animals who wonder if the grass is greener elsewhere, but it's hard to abandon what we know in hopes of finding something better," said John Pearson, Ph.D., research associate in the Duke Department of Neurobiology and lead author of a study published in this week's Current Biology.

"Studies like this one help reveal how the brain weighs costs and benefits in making that kind of decision," Pearson said. "We suspect that such a fundamental question engages many areas of the brain, but this is one of the first studies to show how individual neurons can carry signals for these kinds of strategic decisions."

The researchers looked at how nerve cells fired in a part of the brain known as the posterior cingulate cortex as the monkeys were offered a selection of rewards. Generally, these neurons fired more strongly when monkeys decided to explore new alternatives.

The monkeys started with four rewards to choose from, each a 200 microliter cup of juice. After that, the four targets began to slowly change in value, becoming larger or smaller. The monkeys were free to explore the other targets or stay with the initial target, whose value they knew for certain. Monkeys had to select an option to learn its current value and integrate this information with their knowledge of the chances of getting more juice at a different target.

By studying the individual neurons, the researchers could predict which strategy the monkey would employ.

"These data are interesting from a human health perspective, because the posterior cingulate cortex is the most metabolically active part of the brain when we are daydreaming or thinking to ourselves, and it is also one of the first parts of the brain to show damage in Alzheimer's disease," said Michael Platt, Ph.D., professor of neurobiology and evolutionary anthropology at Duke and senior author of the study.

"People with Alzheimer's become set in their ways and don't explore as much, which may be because this part of the brain is damaged," Platt said. "Likewise, in people with obsessive-compulsive disorder, they can become fixed on certain activities or patterns of activity and can't disengage from them, which may also relate to changes in this part of the brain that renders them mentally unable to switch gears between exploring and exploiting."

More research is needed to learn about how this part of the brain functions, which might be crucial to the flexible adaptation of strategy in response to changing environments, Pearson said.

Other authors include Benjamin Y. Hayden and Sridhar Raghavachari of the Duke Department of Neurobiology. This work was supported by a National Institute on Drug Abuse postdoctoral fellowship, a National Institutes of Health grant, and the Duke Institute for Brain Studies.

Mary Jane Gore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Amazon rain helps make more rain
25.10.2016 | Max-Planck-Institut für Chemie

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>