Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monell scientists identify critical link in mammalian odor detection

07.05.2013
Knockout of Ggamma13 leads to anosmia in mice

Researchers at the Monell Center and collaborators have identified a protein that is critical to the ability of mammals to smell. Mice engineered to be lacking the Ggamma13 protein in their olfactory receptors were functionally anosmic – unable to smell. The findings may lend insight into the underlying causes of certain smell disorders in humans.

"Without Ggamma13, the mice cannot smell," said senior author Liquan Huang, PhD, a molecular biologist at Monell. "This raises the possibility that mutations in the Ggamma13 gene may contribute to certain forms of human anosmia and that gene sequencing may be able to predict some instances of smell loss."

Odor molecules entering the nose are sensed by a family of olfactory receptors. Inside the receptor cells, a complex cascade of molecular interactions converts information to ultimately generate an electrical signal. This signal, called an action potential, is what tells the brain that an odor has been detected.

To date, the identities of some of the intracellular molecules that convert odor information into an action potential remain a mystery. Suspecting that a protein called Ggamma13 might be involved, the research team engineered mice to be lacking this protein and then tested how the 'knockout' mice responded to odors.

Importantly, because the Ggamma13 protein plays critical roles in other parts of the body, the Ggamma13 'knockout' was confined exclusively to smell receptor cells. This specificity allowed the researchers to characterize the effect of Ggamma13 deletion on the olfactory system without interference from changes in other tissues.

Both behavioral and physiological experiments revealed that the Ggamma13 knockout mice did not respond to odors. The findings were published in the Journal of Neuroscience.

In behavioral tests, control mice with an intact sense of smell were able to detect and retrieve a piece of buried food in less than 30 seconds. However, mice lacking Ggamma13 in their olfactory cells required more than 8 minutes to perform the same task. Both sets of mice were able to quickly locate the food when it was placed in plain sight.

A second set of experiments measured olfactory function on a physiological level. Using olfactory tissue from knockout and control mice, the researchers recorded electrical responses to 15 different odors. Responses from the Ggamma13 knockout mice were greatly reduced, suggesting that the olfactory receptors of these mice were unable to translate odor signals into an electrical response.

Together, the findings demonstrate that Ggamma13 is essential for mammals to smell odors and extend the current understanding of how olfactory receptor cells communicate information about odors to the brain. Future studies will seek to identify how Ggamma13 interacts with other molecules within the olfactory receptor.

"Loss of olfactory function can greatly reduce quality of life," said Huang. "Our findings demonstrate the significant consequences when just one molecular component of this complex system does not function properly."

Also contributing to the research were lead author Feng Li, Samusudeen Ponissery-Saidu, Karen Yee, Hong Wang, Naoko Iguchi, and Johannes Reisert from Monell; Meng-Ling Chen and Genhua Zhang from the Changshu Institute of Technology in China; and Ping Jiang from the Wistar Institute. The research was supported by the National Institute on Deafness and Other Communication Disorders, part of the National Institutes of Health, under award numbers R01DC007487, R01DC009613, and DC010012, and core facility grant P30 DC011735. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funding came from National Science Foundation Equipment Grant DBI-0216310 and National Natural Science Foundation of China Grant 31228008.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Now celebrating its 45th anniversary, Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in program areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit http://www.monell.org.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>