Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monash researchers uncover cancer survival secrets

13.08.2008
A team of Monash University researchers has uncovered the role of a family of enzymes in the mutation of benign or less aggressive tumours into more aggressive, potentially fatal, cancers in the human body.

The discovery, published today in the international journal Cancer Cell, provides valuable insights into how cancer cells develop and mutate, and could ultimately change treatment options for sufferers around the world.

Team leader, Associate Professor Tony Tiganis, from the Department of Biochemistry and Molecular Biology at Monash University said their work showed that the enzymes known as protein tyrosine kinases (PTKs) had a greater role than previously thought in the rate of growth and tumour change over time.

"We already know that PTKs are associated with several types of aggressive cancers, including colon, breast and lung cancers," Associate Prof Tiganis said.

"What we have discovered is that PTKs have an important role to play as cancer cells grow and mutate to become potentially more aggressive tumours.

"The more we can learn about how tumours develop, the more we are able to prevent their growth in the future. There are already drugs that inhibit particular PTKs in the late stages of treatment. Our discovery could change the timing of when and how those or similar drugs are administered."

Assoc Professor Tiganis said all cells routinely divide and duplicate during growth. An entire genome is replicated and divides equally into two daughter cells. Sometimes things go wrong. To try to prevent this, nature has installed key cell surveillance checkpoints where molecular 'wardens' slow down DNA replication to try and correct mistakes to get the cell duplication back on track.

Normally, PTKs are turned off in the face of compromised DNA replication, but when PTK pathways remain on, unscheduled cell division can take place where cells distribute their DNA unevenly between the two resulting daughter cells. As a result, tumour cells can accumulate or lose genes and chromosomes, and gain a growth and survival advantage.

"Our studies have shown that PTK pathways are intimately associated with the regulation of checkpoint responses during DNA replication," Assoc Prof Tiganis said.

"We have identified one mechanism by which PTKs may remain activated and allow cancer cells to bypass the molecular warden of DNA replication. They may lack a key enzyme called TCPTP." Experiments published in the prestigious journal Cancer Cell have been conducted using cells grown in the laboratory. "But the big question remains. What happens in the real world of human cancers?"

The Monash team will now apply their laboratory findings to human cancer samples to see if they contain low levels of TCPTP and hopefully cement the role of this protein in cancer formation and development.

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Cell DNA PTK TCPTP Tiganis enzyme enzymes mutation of benign protein tyrosine kinases tumour

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>