Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules wrestle for supremacy in creation of superstructures

17.08.2009
Research at the University of Liverpool has found how mirror-image molecules gain control over each other and dictate the physical state of superstructures.

The research team studied 'chiral' or 'different-handed' molecules which are distinguishable by their inability to be superimposed onto their mirror image.

Such molecules are common – proteins use just one mirror form of amino acids and DNA, one form of sugars. Chirality leads to profound differences in the way a molecule functions – for example, drugs such as thalidomide can have positive effects on a patient but can prove harmful in their mirror image form.

Molecules can also assemble in large numbers and form 'superstructures' such as snowflakes which are created from large numbers of water molecules. When chiral molecules assemble they can create 'handed' superstructures; for example left-handed molecules can assemble together to make a left-handed superstructure. The Liverpool team studied this process in detail by assembling molecules at flat surfaces and using imaging techniques to map the formation of superstructures at nanoscale level.

Before now, scientists have not known whether, in systems containing both left-handed and right-handed molecules, one mirror-form of a molecule could take supremacy over its opposite number in the creation of superstructures, dictating their physical state and chemical and biological properties.

The research found that when equal numbers of mirror-molecules are present at the surface, they organise into separate left and right-handed superstructures, each with distinctly different properties. Crucially, a small imbalance in the population leads to a dramatic difference and only the molecules in the majority assemble into its superstructure, while the minority is left disordered at the surface and unable to create advanced molecular matter.

Professor Rasmita Raval from the University's Surface Science Research Centre said: "We were surprised at these results. All perceived wisdom was that the left and right-handed molecules would simply create their respective superstructures in quantities that reflected the molecular ratio – that is, we would observe proportional representation. Instead, what we obtained was a kind of 'molecular democracy' that worked on a 'first-past-the-post' system where the majority population wrested chiral control of the superstructures and the minority was left disorganised."

Theoretical modelling carried out by the University of Eindhoven in the Netherlands found that this behaviour arises from the effects of entropy, or disorder, which leads the chiral molecules in the majority to preferentially organise into their superstructure.

The work has important implications in the pharmaceuticals industry and could lead to the development of surface processes to enable separation of drugs and products that are currently difficult to purify. The research also introduces the possibility that assembly processes at surfaces may naturally have led to the evolution of proteins and DNA – the molecules of life – containing just one mirror form of amino acids and sugars.

The research, in collaboration with the University of Eindhoven, is published in Nature Chemistry.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>