Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing molecules move in real-time

23.03.2009
Ultrafast lasers instantaneously track a molecular twist in progress

“Watching chemical reactions in real-time has long been a dream of chemists,” says Tahei Tahara of RIKEN’s Advanced Science Institute in Wako. “To reach a correct understanding of chemical reactions, this ‘watching’ is crucial.”

Tracking atoms in chemical reactions has previously seemed unrealistic, because the nuclei move so fast—movements can be complete within 1 picosecond (10-12 second). However, thanks to Tahara, scientists are awakening to a reality where an atom can be followed along a three-dimensional path.

In 2003, Tahara and his colleagues applied the technique known as impulsive stimulated Raman spectroscopy to measure short-lived, excited-state molecules for the first time (1). Using this method, the researchers initiated a chemical reaction by exciting electrons. Then, they induced the entire molecule to vibrate using 10-femtosecond (10-14 second) lasers—which emit light faster than nuclei move. Finally, using a third laser pulse, they measured how these atoms vibrated as the reaction progressed.

Now Tahara and a team of international and Japanese scientists have directly observed how an organic molecule named stilbene rearranges its structure (2). The initial isomer, called cis-stilbene, has two benzene rings positioned close together and connected by a carbon double bond. When excited by light, this molecule twists and rearranges to trans-stilbene, such that the benzene rings end up far apart.

Scientists have long believed that stilbene rearrangement is accomplished by the large motion of the benzene rings. Watching this reaction with Tahara’s spectroscopic method, however, revealed that the molecule changes geometry using a completely different mechanism.

“With excitation, the central carbon double bond is weakened,” explains Tahara. Then, hydrogen atoms attached to the carbon double bond moved in opposite directions, initiating a twisting motion that led to trans-stilbene. “That stilbene twisting is realized by hydrogen atom movement, [and] not by a large motion of benzene rings, was surprising to us,” says Tahara.

To visualize the three-dimensional molecular motion, the team combined experimental results with a high-level quantum-chemical calculation. The computation correlated the frequency changes observed in the experiment with particular molecular movements—and helped identify the exact twisting mechanism.

Tahara and his team’s advanced spectroscopy provides reliable checkpoints to gauge the accuracy of theoretical calculations—a combined approach that will be useful in visualizing other molecular systems.

Tahara says he doesn’t know how conceivable it is to control chemical reactions by light. “Nevertheless, I would like to try it on the basis of solid understanding of the potential energy of reactive molecules, which is obtainable by this type of study.”

References:

1. Fujiyoshi, S., Takeuchi, S. & Tahara, T. Time-resolved impulsive stimulated Raman scattering from excited-state polyatomic molecules in solution. Journal of Physical Chemistry A 107, 494–500 (2003).

2. Takeuchi, S., Ruhman, S., Tsuneda, T., Chiba M., Taketsugu T. & Tahara, T. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

The corresponding author for this highlight is based at the RIKEN Molecular Spectroscopy Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/667/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>