Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing molecules move in real-time

23.03.2009
Ultrafast lasers instantaneously track a molecular twist in progress

“Watching chemical reactions in real-time has long been a dream of chemists,” says Tahei Tahara of RIKEN’s Advanced Science Institute in Wako. “To reach a correct understanding of chemical reactions, this ‘watching’ is crucial.”

Tracking atoms in chemical reactions has previously seemed unrealistic, because the nuclei move so fast—movements can be complete within 1 picosecond (10-12 second). However, thanks to Tahara, scientists are awakening to a reality where an atom can be followed along a three-dimensional path.

In 2003, Tahara and his colleagues applied the technique known as impulsive stimulated Raman spectroscopy to measure short-lived, excited-state molecules for the first time (1). Using this method, the researchers initiated a chemical reaction by exciting electrons. Then, they induced the entire molecule to vibrate using 10-femtosecond (10-14 second) lasers—which emit light faster than nuclei move. Finally, using a third laser pulse, they measured how these atoms vibrated as the reaction progressed.

Now Tahara and a team of international and Japanese scientists have directly observed how an organic molecule named stilbene rearranges its structure (2). The initial isomer, called cis-stilbene, has two benzene rings positioned close together and connected by a carbon double bond. When excited by light, this molecule twists and rearranges to trans-stilbene, such that the benzene rings end up far apart.

Scientists have long believed that stilbene rearrangement is accomplished by the large motion of the benzene rings. Watching this reaction with Tahara’s spectroscopic method, however, revealed that the molecule changes geometry using a completely different mechanism.

“With excitation, the central carbon double bond is weakened,” explains Tahara. Then, hydrogen atoms attached to the carbon double bond moved in opposite directions, initiating a twisting motion that led to trans-stilbene. “That stilbene twisting is realized by hydrogen atom movement, [and] not by a large motion of benzene rings, was surprising to us,” says Tahara.

To visualize the three-dimensional molecular motion, the team combined experimental results with a high-level quantum-chemical calculation. The computation correlated the frequency changes observed in the experiment with particular molecular movements—and helped identify the exact twisting mechanism.

Tahara and his team’s advanced spectroscopy provides reliable checkpoints to gauge the accuracy of theoretical calculations—a combined approach that will be useful in visualizing other molecular systems.

Tahara says he doesn’t know how conceivable it is to control chemical reactions by light. “Nevertheless, I would like to try it on the basis of solid understanding of the potential energy of reactive molecules, which is obtainable by this type of study.”

References:

1. Fujiyoshi, S., Takeuchi, S. & Tahara, T. Time-resolved impulsive stimulated Raman scattering from excited-state polyatomic molecules in solution. Journal of Physical Chemistry A 107, 494–500 (2003).

2. Takeuchi, S., Ruhman, S., Tsuneda, T., Chiba M., Taketsugu T. & Tahara, T. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

The corresponding author for this highlight is based at the RIKEN Molecular Spectroscopy Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/667/

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>