Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule repairs alcohol metabolism enzyme

11.01.2010
An experimental compound repaired a defective alcohol metabolism enzyme that affects an estimated 1 billion people worldwide, according to research supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA).

The findings, published Jan. 10, 2010 in the advance online edition of Nature Structural and Molecular Biology, suggest the possibility of a treatment to reduce the health problems associated with the enzyme defect.

"This intriguing finding could have broad public health implications," said NIAAA Acting Director Kenneth R. Warren, Ph.D. "We look forward to further research aimed at translating these laboratory discoveries into possible treatments for people."

"We recently identified a molecule called Alda-1 that activates the defective enzyme, and in the current study, we determined how this activation is achieved," said the study's senior author, Thomas D. Hurley, Ph.D., professor and associate chairman of biochemistry and molecular biology at Indiana University School of Medicine in Indianapolis. Initial investigations of Alda-1 were led by co-author Daria Mochly-Rosen, Ph.D., professor of chemical and systems biology at Stanford University School of Medicine.

After alcohol is consumed, it is first metabolized, or broken down, into acetaldehyde, a toxic chemical that causes DNA damage. Aldehyde dehydrogenase 2 (ALDH2) is the main enzyme responsible for breaking down acetaldehyde into acetate, a nontoxic metabolite in the body. It also removes other toxic aldehydes that can accumulate in the body.

About 40 percent of the East Asian population, and many people of East Asian descent throughout the world, carry a genetic mutation that produces an inactive form of ALDH2. When individuals with the ALDH2 mutation drink alcohol, acetaldehyde accumulates in the body, resulting in facial flushing, nausea, and rapid heartbeat. In addition to its link to increased cancer risk, the inactive form of ALDH2 also reduces the effectiveness of nitroglycerin. Nitroglycerin is a drug to treat angina, chest pain that occurs when the heart doesn't get enough oxygen-rich blood.

In a series of experiments that examined the interaction between Alda-1 and the defective ALDH2 enzyme, Dr. Hurley and his colleagues found that Alda-1 restored the structure of the inactive enzyme. The normal, active form of ALDH2 creates a catalytic tunnel, a space within the enzyme in which acetaldehyde is metabolized, explained Dr. Hurley. In the defective enzyme, the tunnel does not function properly. Alda-1 binds to the defective enzyme in a way that effectively reopens the catalytic tunnel and thus allows the enzyme to metabolize acetaldehyde.

"The manner in which Alda-1 binds to the structure of ALDH2 provides us with powerful insight into the relationships between activators and inhibitors of this crucial detoxifying enzyme," says Dr. Hurley. "This insight will lead to the modification of Alda-1 to improve its potency, and also opens up the possibility of designing new analogs that can selectively affect the metabolism of other molecules that are detoxified by aldehyde dehydrogenase."

The National Institute on Alcohol Abuse and Alcoholism, part of the National Institutes of Health, is America's authority on alcohol research and health. The primary U.S. agency for conducting and supporting research on the causes, consequences, prevention, and treatment of alcohol abuse, alcoholism, and alcohol problems, NIAAA also disseminates research findings to general, professional, and academic audiences. Additional alcohol research information and publications are available at www.niaaa.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIAAA Press Office | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: ALDH2 Abuse Alcohol consumption Alcoholism Alda-1 Asian Molecule NIAAA NIH health services

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>