Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular structure could help explain albinism, melanoma

13.05.2009
Arthropods and mollusks are Nature's true bluebloods – thanks to hemocyanin, an oxygen-carrying large protein complex, which can even be turned into the enzymatically active chemical phenoloxidase.

Scientists have long known that members of the phenoloxidase family are involved in skin and hair coloring. When they are mutated, they can cause albinism – the loss of coloring in skin and hair. Produced over abundantly, they are associated with the deadly skin cancer melanoma.

In an elegant structural study, a team of Baylor College of Medicine (www.bcm.edu) and German researchers explain how hemocyanin is activated – a finding that could lead to a better understanding of both ends of the skin and hair color spectrum. A report of their work appears in the current issue of the journal Structure.

When Dr. Yao Cong, a postdoctoral researcher in the laboratory of Dr. Wah Chiu (http://www.bcm.edu/biochem/?PMID=3715), displays the computer representation of hemocyanin, it glows like a four-part jewel on the computer screen (see Figure 1). Chiu is professor of biochemistry and molecular biology at BCM and director of the National Center for Macromolecular Imaging (http://ncmi.bcm.tmc.edu/ncmi/).

"It is very large and composed of 24 molecules," Cong said. In fact, it consists of four hexamers, each with six monomers (Movie 1 and Figure).

Just getting this far required using single particle electron cryomicroscopy (cryo-EM) to produce three dimensional density maps of the molecule at sub-nanometer resolution.

"Cryo-EM is becoming a structural tool that can be used for understanding structural mechanism of large protein, which has translational and biotechnological application as demonstrated in this study," said Chiu, a senior author.

"There are some critical structural features are very well resolved in our maps," said Cong. "which could not be captured using other techniques."

She and her colleagues used the detergent SDS, which is usually used as denaturant to degrade protein, to activate hemocyanin. At certain high concentrations, instead of destroyomg the complex, it turns hemocyanin into an enzymatically active phenoloxidase.

Each monomer of the protein particle has three domains.

"It is very interesting," said Cong. "One domain is more flexible than the other two domains because it has much less interaction with neighboring subunits as compared with the other two domains."

Upon activation, there is an overall conformational change of the complex (Movie 2). The most obvious is formation of two bridges in the previously vacant middle of the protein, which strengthens the interaction between the two halves of the complex.

"Zoom into the active site," said Cong. The intrinsically flexible domain twists away from the other two domains, dragging away a blocking residue and exposes the entrance to the active site (Movie 3). This movement is then stabilized by enhanced interhexamer interactions."

"This is all about interaction," said Cong. "A single change in the local domain of a subunit can result in conformation changes in the entire complex and make it work cooperatively. This is really a molecular machine."

Using hemocyanin as a model system, scientists can learn about the activation mechanism of other phenoloxidase enzymes in the same family, opening the door to new understanding of both melanoma and albinism, she said.

"If you know the mechanism of activating the protein, you could mutate it to enhance the interaction or inhibit it – depending on what you want to accomplish," she said.

Not only does this research have implications for human disease, it could also play a role in agriculture, where enzymes in this protein family are responsible for fruit and vegetables turning brown as they age.

Others who took part in this work include Qinfen Zhang, David Woolford, Htet Khant, Matthew Dougherty and Steven J Ludtke, all of BCM, and Thorsten Schweikardt and Heinz Decker of Johannes Gutenberg-University in Mainz, Germany. Zhang is now with Sun Yat-Sen University in Guangzhou, China, and Schweikardt is Boehringer Ingelheim Pharma GmbH & Co. in Germany.

Funding for this work came from the National Center for Research Resources, the Roadmap Initiative for Medical Research and the German Research Foundation and Research Center for Immunology in Mainz.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>