Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular structure could help explain albinism, melanoma

Arthropods and mollusks are Nature's true bluebloods – thanks to hemocyanin, an oxygen-carrying large protein complex, which can even be turned into the enzymatically active chemical phenoloxidase.

Scientists have long known that members of the phenoloxidase family are involved in skin and hair coloring. When they are mutated, they can cause albinism – the loss of coloring in skin and hair. Produced over abundantly, they are associated with the deadly skin cancer melanoma.

In an elegant structural study, a team of Baylor College of Medicine ( and German researchers explain how hemocyanin is activated – a finding that could lead to a better understanding of both ends of the skin and hair color spectrum. A report of their work appears in the current issue of the journal Structure.

When Dr. Yao Cong, a postdoctoral researcher in the laboratory of Dr. Wah Chiu (, displays the computer representation of hemocyanin, it glows like a four-part jewel on the computer screen (see Figure 1). Chiu is professor of biochemistry and molecular biology at BCM and director of the National Center for Macromolecular Imaging (

"It is very large and composed of 24 molecules," Cong said. In fact, it consists of four hexamers, each with six monomers (Movie 1 and Figure).

Just getting this far required using single particle electron cryomicroscopy (cryo-EM) to produce three dimensional density maps of the molecule at sub-nanometer resolution.

"Cryo-EM is becoming a structural tool that can be used for understanding structural mechanism of large protein, which has translational and biotechnological application as demonstrated in this study," said Chiu, a senior author.

"There are some critical structural features are very well resolved in our maps," said Cong. "which could not be captured using other techniques."

She and her colleagues used the detergent SDS, which is usually used as denaturant to degrade protein, to activate hemocyanin. At certain high concentrations, instead of destroyomg the complex, it turns hemocyanin into an enzymatically active phenoloxidase.

Each monomer of the protein particle has three domains.

"It is very interesting," said Cong. "One domain is more flexible than the other two domains because it has much less interaction with neighboring subunits as compared with the other two domains."

Upon activation, there is an overall conformational change of the complex (Movie 2). The most obvious is formation of two bridges in the previously vacant middle of the protein, which strengthens the interaction between the two halves of the complex.

"Zoom into the active site," said Cong. The intrinsically flexible domain twists away from the other two domains, dragging away a blocking residue and exposes the entrance to the active site (Movie 3). This movement is then stabilized by enhanced interhexamer interactions."

"This is all about interaction," said Cong. "A single change in the local domain of a subunit can result in conformation changes in the entire complex and make it work cooperatively. This is really a molecular machine."

Using hemocyanin as a model system, scientists can learn about the activation mechanism of other phenoloxidase enzymes in the same family, opening the door to new understanding of both melanoma and albinism, she said.

"If you know the mechanism of activating the protein, you could mutate it to enhance the interaction or inhibit it – depending on what you want to accomplish," she said.

Not only does this research have implications for human disease, it could also play a role in agriculture, where enzymes in this protein family are responsible for fruit and vegetables turning brown as they age.

Others who took part in this work include Qinfen Zhang, David Woolford, Htet Khant, Matthew Dougherty and Steven J Ludtke, all of BCM, and Thorsten Schweikardt and Heinz Decker of Johannes Gutenberg-University in Mainz, Germany. Zhang is now with Sun Yat-Sen University in Guangzhou, China, and Schweikardt is Boehringer Ingelheim Pharma GmbH & Co. in Germany.

Funding for this work came from the National Center for Research Resources, the Roadmap Initiative for Medical Research and the German Research Foundation and Research Center for Immunology in Mainz.

For more information on basic science research at Baylor College of Medicine, please go to

Glenna Picton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>