Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular structure could help explain albinism, melanoma

13.05.2009
Arthropods and mollusks are Nature's true bluebloods – thanks to hemocyanin, an oxygen-carrying large protein complex, which can even be turned into the enzymatically active chemical phenoloxidase.

Scientists have long known that members of the phenoloxidase family are involved in skin and hair coloring. When they are mutated, they can cause albinism – the loss of coloring in skin and hair. Produced over abundantly, they are associated with the deadly skin cancer melanoma.

In an elegant structural study, a team of Baylor College of Medicine (www.bcm.edu) and German researchers explain how hemocyanin is activated – a finding that could lead to a better understanding of both ends of the skin and hair color spectrum. A report of their work appears in the current issue of the journal Structure.

When Dr. Yao Cong, a postdoctoral researcher in the laboratory of Dr. Wah Chiu (http://www.bcm.edu/biochem/?PMID=3715), displays the computer representation of hemocyanin, it glows like a four-part jewel on the computer screen (see Figure 1). Chiu is professor of biochemistry and molecular biology at BCM and director of the National Center for Macromolecular Imaging (http://ncmi.bcm.tmc.edu/ncmi/).

"It is very large and composed of 24 molecules," Cong said. In fact, it consists of four hexamers, each with six monomers (Movie 1 and Figure).

Just getting this far required using single particle electron cryomicroscopy (cryo-EM) to produce three dimensional density maps of the molecule at sub-nanometer resolution.

"Cryo-EM is becoming a structural tool that can be used for understanding structural mechanism of large protein, which has translational and biotechnological application as demonstrated in this study," said Chiu, a senior author.

"There are some critical structural features are very well resolved in our maps," said Cong. "which could not be captured using other techniques."

She and her colleagues used the detergent SDS, which is usually used as denaturant to degrade protein, to activate hemocyanin. At certain high concentrations, instead of destroyomg the complex, it turns hemocyanin into an enzymatically active phenoloxidase.

Each monomer of the protein particle has three domains.

"It is very interesting," said Cong. "One domain is more flexible than the other two domains because it has much less interaction with neighboring subunits as compared with the other two domains."

Upon activation, there is an overall conformational change of the complex (Movie 2). The most obvious is formation of two bridges in the previously vacant middle of the protein, which strengthens the interaction between the two halves of the complex.

"Zoom into the active site," said Cong. The intrinsically flexible domain twists away from the other two domains, dragging away a blocking residue and exposes the entrance to the active site (Movie 3). This movement is then stabilized by enhanced interhexamer interactions."

"This is all about interaction," said Cong. "A single change in the local domain of a subunit can result in conformation changes in the entire complex and make it work cooperatively. This is really a molecular machine."

Using hemocyanin as a model system, scientists can learn about the activation mechanism of other phenoloxidase enzymes in the same family, opening the door to new understanding of both melanoma and albinism, she said.

"If you know the mechanism of activating the protein, you could mutate it to enhance the interaction or inhibit it – depending on what you want to accomplish," she said.

Not only does this research have implications for human disease, it could also play a role in agriculture, where enzymes in this protein family are responsible for fruit and vegetables turning brown as they age.

Others who took part in this work include Qinfen Zhang, David Woolford, Htet Khant, Matthew Dougherty and Steven J Ludtke, all of BCM, and Thorsten Schweikardt and Heinz Decker of Johannes Gutenberg-University in Mainz, Germany. Zhang is now with Sun Yat-Sen University in Guangzhou, China, and Schweikardt is Boehringer Ingelheim Pharma GmbH & Co. in Germany.

Funding for this work came from the National Center for Research Resources, the Roadmap Initiative for Medical Research and the German Research Foundation and Research Center for Immunology in Mainz.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>