Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Path from Internal Clock to Cells Controlling Rest and Activity Revealed in Penn Study

08.02.2012
The molecular pathway that carries time-of-day signals from the body's internal clock to ultimately guide daily behavior is like a black box, says Amita Sehgal, PhD, the John Herr Musser Professor of Neuroscience and Co-Director, Comprehensive Neuroscience Center, at the Perelman School of Medicine, University of Pennsylvania.

Now, new research from the Sehgal lab is taking a peek inside, describing a molecular pathway and its inner parts that connect the well-known clock neurons to cells governing rhythms of rest and activity in fruit flies. Sehgal is also an investigator with the Howard Hughes Medical Institute.

The other co-author on the study is Wenyu Luo, PhD, a Penn doctoral student who recently defended her dissertation. The findings, which will be featured on the cover of the February 17th issue of Cell, are published online this week.

"Most colleagues would say that we have some understanding of how the clock works and how it is synchronized with light,” says Sehgal. “But we are just beginning to get a glimpse of how the clock drives behavior in the rest of an organism's systems."

Prying the Black Box Open

Normally, flies have a robust rhythm of being active during daylight hours and quiet during the night. Sehgal and Luo essentially found that a microRNA (miRNA) named miR-279 acts through the JAK/STAT pathway to regulate locomotor activity rhythms through a daily cycling of proteins.

An miRNA is a tiny piece of RNA - a little over 20 bases (DNA building blocks) in length -- that binds to matching pieces of messenger RNA, thereby tying it up and decreasing the production of the corresponding protein.

They found that in mutant flies in which miR-279 was either overexpressed or deleted -- causing high levels or low levels of JAK/STAT signaling -- the flies wake and sleep at random intervals. The flies showed no discernible pattern of activity. Therefore, the investigators concluded that a mid-range level of JAK/STAT activity is necessary to maintain the flies' normal pattern. In fact, they found that STAT activity displays a daily rhythm.

Part of the Clock Circuitry

Oscillations of the clock protein PERIOD are normal in clock pacemaker neurons lacking miR-279, suggesting that miR-279 acts downstream of the clock neurons. The team identified the JAK/STAT partner, a protein called Upd, as a target of miR-279. They also showed that knocking down Upd rescues the off-rhythm behavior of the miR-279 mutant flies.

In addition, in brains of mutant flies stained to identify circadian proteins, they found that the central clock neurons project their axons into the vicinity of Upd-expressing neurons, providing a possible physical connection by which the central clock could regulate JAK/STAT signaling to control rest and activity rhythms.

With these findings, the team proposed a model in which the central clock affects the cycle of secretion of the Upd protein from cells. "Upd may act like a time-release capsule," explains Sehgal. "To maintain a typical rest:activity rhythm, the level of Upd has to be just right."

The mRNA levels of Upd in neurons are kept low by miR-279. Upd may rhythmically activate a receptor, Dome, in a third cell, which would lead to daily oscillations of JAK/STAT activity and ultimately to the rest:activity rhythm.

The direct clinical implications of knowing the players in this complicated pathway are not yet clear. But we might be able to conclude, suggests Sehgal, that, if these mechanisms are conserved in humans, then disorders in which the JAK-STAT pathway isn't working properly, as in some immune disorders, physicians might also see problems with patients' sleep-wake cycle.
These findings also provide researchers with a handle on the neural circuit that generates rest:activity behavior in Drosophila. The ultimate goal of many neurobiologists is to trace the entire molecular and cellular pathway that produces a specific behavior. This study is a step towards that goal.
The work was supported by NIH grants 1-R560NS-048471 and 2R01NS04847.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.uphs.upenn.edu/news/News_Releases/2012/02/internal-clock-black-box/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>