Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Path from Internal Clock to Cells Controlling Rest and Activity Revealed in Penn Study

08.02.2012
The molecular pathway that carries time-of-day signals from the body's internal clock to ultimately guide daily behavior is like a black box, says Amita Sehgal, PhD, the John Herr Musser Professor of Neuroscience and Co-Director, Comprehensive Neuroscience Center, at the Perelman School of Medicine, University of Pennsylvania.

Now, new research from the Sehgal lab is taking a peek inside, describing a molecular pathway and its inner parts that connect the well-known clock neurons to cells governing rhythms of rest and activity in fruit flies. Sehgal is also an investigator with the Howard Hughes Medical Institute.

The other co-author on the study is Wenyu Luo, PhD, a Penn doctoral student who recently defended her dissertation. The findings, which will be featured on the cover of the February 17th issue of Cell, are published online this week.

"Most colleagues would say that we have some understanding of how the clock works and how it is synchronized with light,” says Sehgal. “But we are just beginning to get a glimpse of how the clock drives behavior in the rest of an organism's systems."

Prying the Black Box Open

Normally, flies have a robust rhythm of being active during daylight hours and quiet during the night. Sehgal and Luo essentially found that a microRNA (miRNA) named miR-279 acts through the JAK/STAT pathway to regulate locomotor activity rhythms through a daily cycling of proteins.

An miRNA is a tiny piece of RNA - a little over 20 bases (DNA building blocks) in length -- that binds to matching pieces of messenger RNA, thereby tying it up and decreasing the production of the corresponding protein.

They found that in mutant flies in which miR-279 was either overexpressed or deleted -- causing high levels or low levels of JAK/STAT signaling -- the flies wake and sleep at random intervals. The flies showed no discernible pattern of activity. Therefore, the investigators concluded that a mid-range level of JAK/STAT activity is necessary to maintain the flies' normal pattern. In fact, they found that STAT activity displays a daily rhythm.

Part of the Clock Circuitry

Oscillations of the clock protein PERIOD are normal in clock pacemaker neurons lacking miR-279, suggesting that miR-279 acts downstream of the clock neurons. The team identified the JAK/STAT partner, a protein called Upd, as a target of miR-279. They also showed that knocking down Upd rescues the off-rhythm behavior of the miR-279 mutant flies.

In addition, in brains of mutant flies stained to identify circadian proteins, they found that the central clock neurons project their axons into the vicinity of Upd-expressing neurons, providing a possible physical connection by which the central clock could regulate JAK/STAT signaling to control rest and activity rhythms.

With these findings, the team proposed a model in which the central clock affects the cycle of secretion of the Upd protein from cells. "Upd may act like a time-release capsule," explains Sehgal. "To maintain a typical rest:activity rhythm, the level of Upd has to be just right."

The mRNA levels of Upd in neurons are kept low by miR-279. Upd may rhythmically activate a receptor, Dome, in a third cell, which would lead to daily oscillations of JAK/STAT activity and ultimately to the rest:activity rhythm.

The direct clinical implications of knowing the players in this complicated pathway are not yet clear. But we might be able to conclude, suggests Sehgal, that, if these mechanisms are conserved in humans, then disorders in which the JAK-STAT pathway isn't working properly, as in some immune disorders, physicians might also see problems with patients' sleep-wake cycle.
These findings also provide researchers with a handle on the neural circuit that generates rest:activity behavior in Drosophila. The ultimate goal of many neurobiologists is to trace the entire molecular and cellular pathway that produces a specific behavior. This study is a step towards that goal.
The work was supported by NIH grants 1-R560NS-048471 and 2R01NS04847.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.uphs.upenn.edu/news/News_Releases/2012/02/internal-clock-black-box/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>