Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motors in cells work together

17.02.2009
Even within cells, the left hand knows what the right hand is doing.

Molecular motors, the little engines that power cell mobility and the ability of cells to transport internal cargo, work together and in close coordination, according to a new finding by researchers at the University of Virginia. The work could have implications for the treatment of neurodegenerative disorders.

"We found that molecular motors operate in an amazingly coordinated manner when moving an algal cell one way or the other," said Jeneva Laib, the lead author and an undergraduate biomedical engineering student at the University of Virginia. "This provides a new understanding of the ways cells move."

The finding appears online in the current issue of The Proceedings of the National Academy of Sciences.

Laib, a second-year student from Lorton, Va., and her collaborators, U.Va. professors Robert Bloodgood and William Guilford, used the alga Chlamydomonas as a model to study how molecular motors in most types of cells work to move internal cargo, such as organelles associated with energy production and nutrient transport, or even the entire cell.

These motions are caused by a line of motors that pull the cell along, like the locomotive on a train. Previous studies had suggested that these motors pulled in opposite directions, like a game of tug of war. More recent studies indicated that the motors were working together rather than independently.

The new U.Va. study provides strong evidence that the motors are indeed working in coordination, all pulling in one direction, as if under command, or in the opposite direction — again, as if under strict instruction.

"We've found that large numbers of these molecular motors are turning on at the same time to generate large amounts of force, and then turning off at the same time to allow transport in the particular direction," said Guilford, Laib's adviser and lab director. "This insight opens up the possibility for us to begin to understand the mechanism that instructs the motors to pull one way or the other."

A greater understanding of cell motility and the ways in which cells move cargo within cells could eventually lead to therapies for neurodegenerative disorders such as amyotrophic lateral sclerosis (Lou Gehrig's Disease), diabetic neuropathy, and Usher syndrome, a progressive loss of hearing and vision. Neurodegenerative diseases can be caused by defects in the transport processes within neural cells.

"You basically get a logjam within the cell that prevents forward progress of these motors and their cargo," Guilford said. "So if we could understand how the motors are normally coordinated inside cells, we might be able to eventually realize therapeutic approaches to restoring transport for cell revival."

"There is some amazing cooperation going on among these motors," noted Bloodgood, a specialist in cell locomotion research. "When one set of as many as 10 motors turn on, another set turns off in unison. Understanding this process could help us to restore this locomotion when defects occur."

Guilford noted that the study is an example of high-level research conducted by undergraduate students.

"Jeneva's work, published in a first-rate journal, shows that highly motivated and exceptionally bright young students can accomplish outstanding research well before graduate school."

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>