Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular motors in cells work together

Even within cells, the left hand knows what the right hand is doing.

Molecular motors, the little engines that power cell mobility and the ability of cells to transport internal cargo, work together and in close coordination, according to a new finding by researchers at the University of Virginia. The work could have implications for the treatment of neurodegenerative disorders.

"We found that molecular motors operate in an amazingly coordinated manner when moving an algal cell one way or the other," said Jeneva Laib, the lead author and an undergraduate biomedical engineering student at the University of Virginia. "This provides a new understanding of the ways cells move."

The finding appears online in the current issue of The Proceedings of the National Academy of Sciences.

Laib, a second-year student from Lorton, Va., and her collaborators, U.Va. professors Robert Bloodgood and William Guilford, used the alga Chlamydomonas as a model to study how molecular motors in most types of cells work to move internal cargo, such as organelles associated with energy production and nutrient transport, or even the entire cell.

These motions are caused by a line of motors that pull the cell along, like the locomotive on a train. Previous studies had suggested that these motors pulled in opposite directions, like a game of tug of war. More recent studies indicated that the motors were working together rather than independently.

The new U.Va. study provides strong evidence that the motors are indeed working in coordination, all pulling in one direction, as if under command, or in the opposite direction — again, as if under strict instruction.

"We've found that large numbers of these molecular motors are turning on at the same time to generate large amounts of force, and then turning off at the same time to allow transport in the particular direction," said Guilford, Laib's adviser and lab director. "This insight opens up the possibility for us to begin to understand the mechanism that instructs the motors to pull one way or the other."

A greater understanding of cell motility and the ways in which cells move cargo within cells could eventually lead to therapies for neurodegenerative disorders such as amyotrophic lateral sclerosis (Lou Gehrig's Disease), diabetic neuropathy, and Usher syndrome, a progressive loss of hearing and vision. Neurodegenerative diseases can be caused by defects in the transport processes within neural cells.

"You basically get a logjam within the cell that prevents forward progress of these motors and their cargo," Guilford said. "So if we could understand how the motors are normally coordinated inside cells, we might be able to eventually realize therapeutic approaches to restoring transport for cell revival."

"There is some amazing cooperation going on among these motors," noted Bloodgood, a specialist in cell locomotion research. "When one set of as many as 10 motors turn on, another set turns off in unison. Understanding this process could help us to restore this locomotion when defects occur."

Guilford noted that the study is an example of high-level research conducted by undergraduate students.

"Jeneva's work, published in a first-rate journal, shows that highly motivated and exceptionally bright young students can accomplish outstanding research well before graduate school."

Fariss Samarrai | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>