Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motors in cells work together

17.02.2009
Even within cells, the left hand knows what the right hand is doing.

Molecular motors, the little engines that power cell mobility and the ability of cells to transport internal cargo, work together and in close coordination, according to a new finding by researchers at the University of Virginia. The work could have implications for the treatment of neurodegenerative disorders.

"We found that molecular motors operate in an amazingly coordinated manner when moving an algal cell one way or the other," said Jeneva Laib, the lead author and an undergraduate biomedical engineering student at the University of Virginia. "This provides a new understanding of the ways cells move."

The finding appears online in the current issue of The Proceedings of the National Academy of Sciences.

Laib, a second-year student from Lorton, Va., and her collaborators, U.Va. professors Robert Bloodgood and William Guilford, used the alga Chlamydomonas as a model to study how molecular motors in most types of cells work to move internal cargo, such as organelles associated with energy production and nutrient transport, or even the entire cell.

These motions are caused by a line of motors that pull the cell along, like the locomotive on a train. Previous studies had suggested that these motors pulled in opposite directions, like a game of tug of war. More recent studies indicated that the motors were working together rather than independently.

The new U.Va. study provides strong evidence that the motors are indeed working in coordination, all pulling in one direction, as if under command, or in the opposite direction — again, as if under strict instruction.

"We've found that large numbers of these molecular motors are turning on at the same time to generate large amounts of force, and then turning off at the same time to allow transport in the particular direction," said Guilford, Laib's adviser and lab director. "This insight opens up the possibility for us to begin to understand the mechanism that instructs the motors to pull one way or the other."

A greater understanding of cell motility and the ways in which cells move cargo within cells could eventually lead to therapies for neurodegenerative disorders such as amyotrophic lateral sclerosis (Lou Gehrig's Disease), diabetic neuropathy, and Usher syndrome, a progressive loss of hearing and vision. Neurodegenerative diseases can be caused by defects in the transport processes within neural cells.

"You basically get a logjam within the cell that prevents forward progress of these motors and their cargo," Guilford said. "So if we could understand how the motors are normally coordinated inside cells, we might be able to eventually realize therapeutic approaches to restoring transport for cell revival."

"There is some amazing cooperation going on among these motors," noted Bloodgood, a specialist in cell locomotion research. "When one set of as many as 10 motors turn on, another set turns off in unison. Understanding this process could help us to restore this locomotion when defects occur."

Guilford noted that the study is an example of high-level research conducted by undergraduate students.

"Jeneva's work, published in a first-rate journal, shows that highly motivated and exceptionally bright young students can accomplish outstanding research well before graduate school."

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>