Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fire detector

13.05.2011
The protein responsible for the detection of extreme heat and pain resulting from infections has been identified by a team of K.U.Leuven researchers led by Professor Thomas Voets. The protein is a promising target for the development of new analgesic medications.

A rapid pain response to extreme temperatures is of vital importance to prevent being burned by touching a hot object or accidentally swallowing scolding soup, for example. Sensory nerves throughout the body – including in our skin and mucous membranes – detect temperature.

In people who suffer from certain conditions, such as infections or nerve damage, these nerves become extra sensitive. This sometimes results in oversensitivity to innocuous temperatures and chronic pain.

There are ion channels in the cell wall around these nerves – microscopic sluices that react to certain stimuli and then send electrical signals to the brain. Approximately ten years ago, American researchers discovered the capsaicin receptor: an ion channel that is responsible for the detection of heat and of “hot” chemical substances.
Capsaicin is the substance that gives red peppers their spicy taste. Research demonstrated, however, that the capsaicin receptor is not responsible for all heat detection and that there must be other molecular detectors for extreme heat.

Research conducted by Doctor Joris Vriens, in collaboration with colleagues at the Leuven Laboratory for Ion Channel Research and German researchers, has demonstrated that the ion channel TRPM3 is also a molecular sensor for heat and for the hormone pregnenolone sulfate – a precursor to the gender hormones oestrogen or testosterone. Mice with a defective TRPM3 gene appear to feel far less pain when exposed to heat or the steroid hormone. Moreover, these mice do not develop oversensitivity to heat when they have infections. These new discoveries make TRPM3 a promising target for the development of new analgesic medications.

Contact:
Professor Thomas Voets, tel. +32 16 33 02 17
or Joris Vriens, tel. +32 16 33 02 16

More info: The complete text of the "TRPM3 is a nociceptor channel involved in the detection of noxious heat” by Joris Vriens, Grzegorz Owsianik, Thomas Hofmann, Stephan Philipp, Julia Stab, Xiaodi Chen, Melissa Benoit, Fenqin Xue, Annelies Janssens, Sara Kerselaers, Johannes Oberwinkler, Rudi Vennekens, Thomas Gudermann, Bernd Nilius and Thomas Voets is available on the website of the scientific journal Neuron: www.cell.com/neuron/abstract/S0896-6273(11)00292-3.

pressoffice | K.U. Leuven
Further information:
http://www.kuleuven.be

Further reports about: Molecular Target chemical substance mucous membrane

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>