Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fire detector

13.05.2011
The protein responsible for the detection of extreme heat and pain resulting from infections has been identified by a team of K.U.Leuven researchers led by Professor Thomas Voets. The protein is a promising target for the development of new analgesic medications.

A rapid pain response to extreme temperatures is of vital importance to prevent being burned by touching a hot object or accidentally swallowing scolding soup, for example. Sensory nerves throughout the body – including in our skin and mucous membranes – detect temperature.

In people who suffer from certain conditions, such as infections or nerve damage, these nerves become extra sensitive. This sometimes results in oversensitivity to innocuous temperatures and chronic pain.

There are ion channels in the cell wall around these nerves – microscopic sluices that react to certain stimuli and then send electrical signals to the brain. Approximately ten years ago, American researchers discovered the capsaicin receptor: an ion channel that is responsible for the detection of heat and of “hot” chemical substances.
Capsaicin is the substance that gives red peppers their spicy taste. Research demonstrated, however, that the capsaicin receptor is not responsible for all heat detection and that there must be other molecular detectors for extreme heat.

Research conducted by Doctor Joris Vriens, in collaboration with colleagues at the Leuven Laboratory for Ion Channel Research and German researchers, has demonstrated that the ion channel TRPM3 is also a molecular sensor for heat and for the hormone pregnenolone sulfate – a precursor to the gender hormones oestrogen or testosterone. Mice with a defective TRPM3 gene appear to feel far less pain when exposed to heat or the steroid hormone. Moreover, these mice do not develop oversensitivity to heat when they have infections. These new discoveries make TRPM3 a promising target for the development of new analgesic medications.

Contact:
Professor Thomas Voets, tel. +32 16 33 02 17
or Joris Vriens, tel. +32 16 33 02 16

More info: The complete text of the "TRPM3 is a nociceptor channel involved in the detection of noxious heat” by Joris Vriens, Grzegorz Owsianik, Thomas Hofmann, Stephan Philipp, Julia Stab, Xiaodi Chen, Melissa Benoit, Fenqin Xue, Annelies Janssens, Sara Kerselaers, Johannes Oberwinkler, Rudi Vennekens, Thomas Gudermann, Bernd Nilius and Thomas Voets is available on the website of the scientific journal Neuron: www.cell.com/neuron/abstract/S0896-6273(11)00292-3.

pressoffice | K.U. Leuven
Further information:
http://www.kuleuven.be

Further reports about: Molecular Target chemical substance mucous membrane

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>