Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ‘Eat Now’ Signal Makes Cells Devour Dying Neighbors

17.07.2014

Process suggests a new type of immunotherapy

A team of researchers has devised a Pac-Man-style power pellet that gets normally mild-mannered cells to gobble up their undesirable neighbors. The development may point the way to therapies that enlist patients’ own cells to better fend off infection and even cancer, the researchers say.


Credit: Toru Komatsu/University of Tokyo

Caption: A healthy cell (green) that has recognized and engulfed dying cells (purple).

A description of the work will be published July 15 in the journal Science Signaling.

“Our goal is to build artificial cells programmed to eat up dangerous junk in the body, which could be anything from bacteria to the amyloid-beta plaques that cause Alzheimer’s to the body’s own rogue cancer cells,” says Takanari Inoue, Ph.D., an associate professor of cell biology in the Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences, who led the study. “By figuring out how to get normally inert cells to recognize and engulf dying cells, we’ve taken an important step in that direction.”

Identifying and devouring dying cells and other “junk” is usually the job of white blood cells called macrophages and neutrophils, which also go after bacteria and other invaders in a process called phagocytosis. For the new experiments, Inoue teamed up with researchers at the University of Tokyo to strip down phagocytosis, figuring out the minimum tools one cell needs to eat another one.

They started not with macrophages, but with a type of laboratory-grown human cells known as HeLa, which normally can’t perform phagocytosis. Their first task was to induce the HeLa cells to attach to nearby dying cells by getting the right “receptors” to the HeLa cells’ surface. The researchers knew that part of a receptor protein called MFG-E8 would recognize and stick to a distress signal on the surface of dying cells, and coaxing the HeLa cells to make the protein fragment was straightforward. To get the fragment, termed C2, onto the outside of the cells, the team found a way to stick it to another protein that was bound for the cell’s surface, thus taking advantage of the cell’s own transportation system. “We put C2 on the same bus as the membrane protein,” Inoue says.

As a result, up to six dying cells stuck to each HeLa cell. The bad news was that though they were cozy, the HeLa cells weren’t actually eating the dying cells.

Fortunately, Inoue says, the team already had an idea about what to try next: Other research had shown that activating a gene called Rac would cause a cell to engulf beads stuck to its surface. Sure enough, HeLa cells with both surface C2 and activated Rac swallowed dying cells readily, the team found.

“We’ve shown it’s possible to endow ordinary cells with the power to do something unique: take on the role of a specialized macrophage,” Inoue says.

Inoue cautions that the investigators don’t believe the engulfed cells are being broken down. Getting the HeLa cells to finish the phagocytosis process will be one of the group’s next steps.

Other authors on the paper are Hiroki Onuma, Toru Komatsu, Makoto Arita, Kenjiro Hanaoka, Tasuku Ueno, Takuya Terai and Tetsuo Nagano of the University of Tokyo.

This study was funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant numbers 22000006 and 24655147), the Japan Science and Technology Agency (grant numbers 10602 and 10216), the Mochida Memorial Foundation for Medical and Pharmaceutical Research and the National Institute of General Medical Sciences (grant number GM092930).

Shawna Williams | newswise
Further information:
http://www.jhmi.edu

Further reports about: HeLa Molecular bacteria dangerous junk macrophages phagocytosis

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>