Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ‘Eat Now’ Signal Makes Cells Devour Dying Neighbors

17.07.2014

Process suggests a new type of immunotherapy

A team of researchers has devised a Pac-Man-style power pellet that gets normally mild-mannered cells to gobble up their undesirable neighbors. The development may point the way to therapies that enlist patients’ own cells to better fend off infection and even cancer, the researchers say.


Credit: Toru Komatsu/University of Tokyo

Caption: A healthy cell (green) that has recognized and engulfed dying cells (purple).

A description of the work will be published July 15 in the journal Science Signaling.

“Our goal is to build artificial cells programmed to eat up dangerous junk in the body, which could be anything from bacteria to the amyloid-beta plaques that cause Alzheimer’s to the body’s own rogue cancer cells,” says Takanari Inoue, Ph.D., an associate professor of cell biology in the Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences, who led the study. “By figuring out how to get normally inert cells to recognize and engulf dying cells, we’ve taken an important step in that direction.”

Identifying and devouring dying cells and other “junk” is usually the job of white blood cells called macrophages and neutrophils, which also go after bacteria and other invaders in a process called phagocytosis. For the new experiments, Inoue teamed up with researchers at the University of Tokyo to strip down phagocytosis, figuring out the minimum tools one cell needs to eat another one.

They started not with macrophages, but with a type of laboratory-grown human cells known as HeLa, which normally can’t perform phagocytosis. Their first task was to induce the HeLa cells to attach to nearby dying cells by getting the right “receptors” to the HeLa cells’ surface. The researchers knew that part of a receptor protein called MFG-E8 would recognize and stick to a distress signal on the surface of dying cells, and coaxing the HeLa cells to make the protein fragment was straightforward. To get the fragment, termed C2, onto the outside of the cells, the team found a way to stick it to another protein that was bound for the cell’s surface, thus taking advantage of the cell’s own transportation system. “We put C2 on the same bus as the membrane protein,” Inoue says.

As a result, up to six dying cells stuck to each HeLa cell. The bad news was that though they were cozy, the HeLa cells weren’t actually eating the dying cells.

Fortunately, Inoue says, the team already had an idea about what to try next: Other research had shown that activating a gene called Rac would cause a cell to engulf beads stuck to its surface. Sure enough, HeLa cells with both surface C2 and activated Rac swallowed dying cells readily, the team found.

“We’ve shown it’s possible to endow ordinary cells with the power to do something unique: take on the role of a specialized macrophage,” Inoue says.

Inoue cautions that the investigators don’t believe the engulfed cells are being broken down. Getting the HeLa cells to finish the phagocytosis process will be one of the group’s next steps.

Other authors on the paper are Hiroki Onuma, Toru Komatsu, Makoto Arita, Kenjiro Hanaoka, Tasuku Ueno, Takuya Terai and Tetsuo Nagano of the University of Tokyo.

This study was funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant numbers 22000006 and 24655147), the Japan Science and Technology Agency (grant numbers 10602 and 10216), the Mochida Memorial Foundation for Medical and Pharmaceutical Research and the National Institute of General Medical Sciences (grant number GM092930).

Shawna Williams | newswise
Further information:
http://www.jhmi.edu

Further reports about: HeLa Molecular bacteria dangerous junk macrophages phagocytosis

More articles from Life Sciences:

nachricht Biology in a twist -- deciphering the origins of cell behavior
31.03.2015 | National University of Singapore

nachricht Speech dynamics are coded in the left motor cortex
31.03.2015 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>