Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular Chaperone for Membrane Proteins

Heidelberg biochemists decipher the “escort service” for biological solar collectors
For photosynthesis, the chloroplasts of all green plants contain biological solar collectors known as light-harvesting proteins. Because these proteins are not manufactured in the plant cell where they are used, they need to be transported. A specific molecular chaperone ensures they reach their destination. Biochemists at Heidelberg University have now gained elementary knowledge on the structure and function of this chaperone with the help of a variety of methods from structural biology.

The process of photosynthesis takes energy from the sun and converts it into chemical energy, creating oxygen in the process. For this purpose, the chloroplasts of all green plants contain biological solar collectors. These light-harvesting proteins are the most frequently occurring membrane proteins on the planet and are absolutely essential for efficient photosynthesis. Like all membrane proteins, the light-harvesting proteins also have characteristic hydrophobic – i.e. water-repellent – regions with which they are embedded in their target membrane. Until they reach the target membrane, in this case membrane systems in the chloroplasts, a chaperone shields the hydrophobic regions from harmful interactions.

The chloroplast proteins cpSRP43 and cpSRP54 function in this chaperone role for the light-harvesting proteins. “Deciphering the three-dimensional structure of the core complex of these two proteins allows us to draw basic conclusions about how the chaperone functions”, explains Prof. Dr. Irm¬gard Sinning of the Heidelberg University Biochemistry Center (BZH). The team of scientists working with Prof. Sinning discovered that two protein motifs take part in the interaction between cpSRP43 and cpSRP54, similar to the motifs that play a central role in regulating access to the genetic material in the cell nucleus. While scientists have known for years about the “histone code” involved in the processes in the nucleus, they now face the puzzle of the newly discovered “arginine code” in the chloroplasts.

The Heidelberg scientists conducted their research in close cooperation with colleagues from the Munich Technical University and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The researchers combined different structural biology methods in the pursuit of their work. X-ray structure analysis, nuclear magnetic resonance (NMR) spectroscopy, and small angle X-ray scattering were key in revealing the architecture and dynamics of the core complex of cpSRP43 und cpSRP54. In addition, they took advantage of the Biochemistry Center’s protein crystallization platform, which receives support from the Cluster of Excellence CellNetworks at Heidelberg University. The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
I. Holdermann, N.H. Meyer, A. Round, K. Wild, M. Sattler, I. Sinning: Chromodomains read the arginine code of post-translational targeting. Nat Struct Mol Biol. 2012 Jan 8. doi: 10.1038/nsmb.2196

Prof. Dr. Irmgard Sinning
Biochemistry Center, phone: +49 6221 54-4781

Communications and Marketing
Press Office, Phone +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>