Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular Chaperone for Membrane Proteins

Heidelberg biochemists decipher the “escort service” for biological solar collectors
For photosynthesis, the chloroplasts of all green plants contain biological solar collectors known as light-harvesting proteins. Because these proteins are not manufactured in the plant cell where they are used, they need to be transported. A specific molecular chaperone ensures they reach their destination. Biochemists at Heidelberg University have now gained elementary knowledge on the structure and function of this chaperone with the help of a variety of methods from structural biology.

The process of photosynthesis takes energy from the sun and converts it into chemical energy, creating oxygen in the process. For this purpose, the chloroplasts of all green plants contain biological solar collectors. These light-harvesting proteins are the most frequently occurring membrane proteins on the planet and are absolutely essential for efficient photosynthesis. Like all membrane proteins, the light-harvesting proteins also have characteristic hydrophobic – i.e. water-repellent – regions with which they are embedded in their target membrane. Until they reach the target membrane, in this case membrane systems in the chloroplasts, a chaperone shields the hydrophobic regions from harmful interactions.

The chloroplast proteins cpSRP43 and cpSRP54 function in this chaperone role for the light-harvesting proteins. “Deciphering the three-dimensional structure of the core complex of these two proteins allows us to draw basic conclusions about how the chaperone functions”, explains Prof. Dr. Irm¬gard Sinning of the Heidelberg University Biochemistry Center (BZH). The team of scientists working with Prof. Sinning discovered that two protein motifs take part in the interaction between cpSRP43 and cpSRP54, similar to the motifs that play a central role in regulating access to the genetic material in the cell nucleus. While scientists have known for years about the “histone code” involved in the processes in the nucleus, they now face the puzzle of the newly discovered “arginine code” in the chloroplasts.

The Heidelberg scientists conducted their research in close cooperation with colleagues from the Munich Technical University and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The researchers combined different structural biology methods in the pursuit of their work. X-ray structure analysis, nuclear magnetic resonance (NMR) spectroscopy, and small angle X-ray scattering were key in revealing the architecture and dynamics of the core complex of cpSRP43 und cpSRP54. In addition, they took advantage of the Biochemistry Center’s protein crystallization platform, which receives support from the Cluster of Excellence CellNetworks at Heidelberg University. The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
I. Holdermann, N.H. Meyer, A. Round, K. Wild, M. Sattler, I. Sinning: Chromodomains read the arginine code of post-translational targeting. Nat Struct Mol Biol. 2012 Jan 8. doi: 10.1038/nsmb.2196

Prof. Dr. Irmgard Sinning
Biochemistry Center, phone: +49 6221 54-4781

Communications and Marketing
Press Office, Phone +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>