Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt researcher says no survival advantage with peripheral blood stem cells versus bone marrow

19.10.2012
Moffitt Cancer Center Researcher, Colleagues Say Peripheral Blood Stem Cell Transplants from Unrelated Donors Associated with Higher Rates of Chronic Graft-Versus-Host-Disease

Claudio Anasetti, M.D., chair of the Department of Blood & Marrow Transplant at Moffitt Cancer Center, and colleagues from 47 research sites in the Blood and Marrow Transplant Clinical Trials Network conducted a two-year clinical trial comparing two-year survival probabilities for patients transplanted with peripheral blood stem cells or bone marrow stem cells from unrelated donors.

The goal was to determine whether graft source, peripheral blood stem cells or bone marrow, affects outcomes in unrelated donor transplants for patients with leukemia or other hematologic malignancies.

Fifty transplant centers in the United States and Canada participated in this phase III study, which randomized 278 patients to receive bone marrow and 273 patients to receive peripheral blood stem cells as the graft source for transplant. The results of the study are in the Oct. 18 issue of The New England Journal of Medicine.

According to the trial analyses, there were no observed differences in overall survival, relapse, non-relapse mortality, or acute graft-versus-host disease (GHVD) between the patients receiving peripheral blood stem cells or bone marrow stem cells from unrelated donors. GVHD is a serious and often deadly post-transplant complication that occurs when the newly transplanted donor cells attack the transplant recipient’s body. While engraftment was faster in patients receiving peripheral blood stem cells, there was a higher incidence of overall chronic GVHD in these patients (53 percent) than in those transplanted with bone marrow stem cells (40 percent). Patients receiving transplants of peripheral blood stem cells from unrelated donors also had a higher incidence of chronic GVHD affecting multiple organs (46 percent) than patients who received bone marrow stem cells (31 percent).
“Although peripheral blood stem cells from related donors have demonstrated clinical benefits, our trial demonstrates that when these stem cells originate from unrelated donors, they are not superior to bone marrow stem cells in terms of patient survival, and they increase the risk for chronic GVHD,” said Anasetti, lead study author. “More effective strategies to prevent GVHD are needed to improve outcomes for all patients receiving unrelated donor transplants.”

Peripheral blood stem cells are stem cells originally found in the bone marrow that have been moved into the blood stream by a special regimen of drugs. Unlike bone marrow stem cells, which must be extracted from the bones in an operating room, peripheral blood stem cells are more easily obtained through apheresis, a process similar to regular blood donation, which collects the peripheral blood stem cells through a tube inserted in a vein. A critical step before the transplant involves finding a donor that is tissue matched to the recipient.
About one-third of patients who need a peripheral blood stem cell or bone marrow transplant for treatment of leukemia or another blood disease are able to secure a related donor. According to the National Marrow Donor Program, for the 70 percent who cannot find a donor within their family, most will be able to find an unrelated donor. Because the majority of transplant patients need cells from unrelated donors, it’s necessary to better understand the risks associated with transplants of unrelated donor cells.

Clinical trials on related donor transplants have demonstrated that peripheral blood stem cell transplants in patients with leukemia and other blood diseases result in better engraftment, lower relapse rates, and increased survival compared with transplants with bone marrow stem cells. However, those trials also found that peripheral blood stem cell transplants carry an increased risk of GVHD. Patients who survive early post-transplant may develop chronic GVHD, a disabling condition managed with long-term immunosuppressant therapy.

Many transplant centers are increasingly using peripheral blood stem cells as a source for adult stem cells because of their superiority in clinical trials that have directly compared outcomes between peripheral blood stem cells and bone marrow stem cells from related donors. However, there has not been a comparative study of the two transplant sources that has prospectively analyzed patient outcomes in unrelated donor transplants.

The study was funded by the National Heart, Lung and Blood Institute (U10HL069294), the National Cancer Institute and the National Marrow Donor Program.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>