Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moderate Levels of ‘Free Radicals’ Found Beneficial to Healing Wounds

14.10.2014

Long assumed to be destructive to tissues and cells, “free radicals” generated by the cell’s mitochondria—the energy producing structures in the cell—are actually beneficial to healing wounds.

That’s the conclusion of biologists at UC San Diego who discovered that “reactive oxygen species”—chemically reactive molecules containing oxygen, such as peroxides, commonly referred to as free radicals—are necessary for the proper healing of skin wounds in the laboratory roundworm C. elegans.


Increased levels of free radicals were found to speed the healing of wounds in the laboratory roundworm C. elegans. Credit: Suhong Xu, UC San Diego

In a paper published in the October 13 issue of the journal Developmental Cell, the researchers found that free radicals generated in the mitochondria not only are necessary for skin wound healing, but that increased levels of reactive oxygen species, or ROS, can actually make wounds heal faster.

“There are many ways you can generate ROS in the cell, but no one had looked in the mitochondria in detail,” said Andrew Chisholm, a professor of biology at UC San Diego, who conducted the study with Suhong Xu, a postdoctoral fellow in his laboratory. “Our discovery was surprising because we didn’t realize that mitochondria were playing these roles in wound healing.”

Free radicals, or ROS, have long been known to damage DNA, RNA and proteins. Because such oxidative damage is thought to contribute to premature aging and cancer, many people take antioxidants to minimize the cellular damage from free radicals.

But the UC San Diego researchers found that while too much ROS in the cell may be bad for you, eliminating ROS altogether prevents wound healing, at least for roundworms. Their discovery has implications for the development of new pharmaceuticals to treat the elderly and people with diabetes who have chronic issues with wound healing.

“It appears you need some optimal level of ROS signaling,” explains Chisholm. “Too much is bad for you, but too little is also bad. We discovered in our experiments that when we knocked out the genes that produced ROS in the mitochondria and eliminated antioxidants, the roundworms had trouble closing up their wounds. We also found that a little more ROS helped the wounds close faster than normal.”

While the researchers have confirmed their results only for the lowly roundworm, they suspect it applies to higher animals and are planning to continue further investigations in rodents.

“We suspect that these genetic pathways are conserved, so that they would apply to vertebrates and mammals as well,” said Chisholm.

The project was supported by a grant from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (R01 GM054657).

Kim McDonald | Eurek Alert!
Further information:
http://ucsdnews.ucsd.edu/pressrelease/moderate_levels_of_free_radicals_found_beneficial_to_healing_wounds

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>