Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moderate Levels of ‘Free Radicals’ Found Beneficial to Healing Wounds

14.10.2014

Long assumed to be destructive to tissues and cells, “free radicals” generated by the cell’s mitochondria—the energy producing structures in the cell—are actually beneficial to healing wounds.

That’s the conclusion of biologists at UC San Diego who discovered that “reactive oxygen species”—chemically reactive molecules containing oxygen, such as peroxides, commonly referred to as free radicals—are necessary for the proper healing of skin wounds in the laboratory roundworm C. elegans.


Increased levels of free radicals were found to speed the healing of wounds in the laboratory roundworm C. elegans. Credit: Suhong Xu, UC San Diego

In a paper published in the October 13 issue of the journal Developmental Cell, the researchers found that free radicals generated in the mitochondria not only are necessary for skin wound healing, but that increased levels of reactive oxygen species, or ROS, can actually make wounds heal faster.

“There are many ways you can generate ROS in the cell, but no one had looked in the mitochondria in detail,” said Andrew Chisholm, a professor of biology at UC San Diego, who conducted the study with Suhong Xu, a postdoctoral fellow in his laboratory. “Our discovery was surprising because we didn’t realize that mitochondria were playing these roles in wound healing.”

Free radicals, or ROS, have long been known to damage DNA, RNA and proteins. Because such oxidative damage is thought to contribute to premature aging and cancer, many people take antioxidants to minimize the cellular damage from free radicals.

But the UC San Diego researchers found that while too much ROS in the cell may be bad for you, eliminating ROS altogether prevents wound healing, at least for roundworms. Their discovery has implications for the development of new pharmaceuticals to treat the elderly and people with diabetes who have chronic issues with wound healing.

“It appears you need some optimal level of ROS signaling,” explains Chisholm. “Too much is bad for you, but too little is also bad. We discovered in our experiments that when we knocked out the genes that produced ROS in the mitochondria and eliminated antioxidants, the roundworms had trouble closing up their wounds. We also found that a little more ROS helped the wounds close faster than normal.”

While the researchers have confirmed their results only for the lowly roundworm, they suspect it applies to higher animals and are planning to continue further investigations in rodents.

“We suspect that these genetic pathways are conserved, so that they would apply to vertebrates and mammals as well,” said Chisholm.

The project was supported by a grant from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (R01 GM054657).

Kim McDonald | Eurek Alert!
Further information:
http://ucsdnews.ucsd.edu/pressrelease/moderate_levels_of_free_radicals_found_beneficial_to_healing_wounds

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>