Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New models question old assumptions about how many molecules it takes to control cell division

26.02.2009
A single cell – whether a yeast cell or one of your cells – is exquisitely sensitive to its surroundings. It receives input signals, processes the information, makes decisions, and issues commands for making the proper response.

As with any control system, noise – errors, slip-ups, mis-reads – can get in the way of correct decision making. Virginia Tech biologists and engineers have created a mathematical model to explore the roles of noise in controlling the basic events of the cell cycle – DNA replication and cell division.

Their work will appear the week of February 23 in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) and later in the print version of the special feature issue on complex systems. The article, "Exploring the Roles of Noise in the Eukaryotic Cell Cycle," is by postdoctoral associate Sandip Kar; William Baumann, professor of electrical and computer engineering; Mark Paul, professor of mechanical engineering; and John Tyson, University Distinguished Professor of biological sciences.

Their efforts to accurately calculate the effects of noise in a yeast cell revealed flaws in two accepted notions about information processing in single cells: about the numbers of messenger RNA (mRNA) molecules in a cell, and about how long they live.

A fundamental challenge of systems biology is trying to understand the molecular basis of decision making in a single cell. "Information processing is done by a molecular network consisting of interacting genes and proteins," Tyson said. "You could compare it to a computer that is based on integrated circuits or to a mechanical control system based on sensors, wires and servomotors -- except that information processing in cells is unique in two ways. First, the cell is a sloppy, liquid environment, with molecules bouncing around and reacting with one another. Second, cells are extremely tiny; therefore sensitive to random fluctuations in the number of molecules being created or destroyed at any given moment."

Nonetheless, the ebb and flow of molecules in a cell must reliably convey instructions for such essential processes as DNA replication and cell division.

How big are the molecular fluctuations expected in a single yeast cell? Physicists estimate molecular fluctuation using a rule-of-thumb that the size of typical fluctuations is the square root of the average number of molecules. "If there are on average 900 molecules of a particular protein in a cell, then we can expect fluctuations of plus or minus 30 molecules, or 3.3 percent," said Tyson. "That is not too bad."

For DNA there might be a severe problem, Tyson noted, "because there is only one copy of every gene in a yeast cell. But cells are equipped with an elaborate and expensive mechanism to replicate DNA molecules and not allow the random fluctuations predicted by statistical physics."

The weak link in the is mRNA: the molecule that carries information from the gene to the cell's ribosomes, where proteins are made.

The literature reports that there is on average only 1 mRNA molecule per gene per cell, in yeast, and that each mRNA molecule lives, on average, for 15 to 20 minutes before it is degraded. "This is intriguing," said Tyson, "because the physicist's rule-of-thumb would predict very large fluctuations in mRNA abundance – sometimes 1, sometimes 0, sometimes 2 or 3 or 4 -- which means the noise among mRNA molecules is huge, and it propagates to the level of the encoded protein."

The noisy fluctuations in protein level may be 50 percent instead of 3 percent. "There is no way the control system can work in the face of such large fluctuations," Tyson said. "It would be completely unreliable."

Progression through the cell cycle is indeed a noisy process, with typical flucutations of 15 to 20 percent for the time taken to complete the process. To achieve this level of control, the Virginia Tech researchers conclude, in their PNAS paper, that 1) the average number of specific mRNA molecules must be 5 to 10 times larger than the generally accepted value, or 2) the half-life of mRNA molecules must be 10 to 20 times shorter than the reported value, or 3) the cell must have specific mechanisms for noise reduction in its mRNA populations. Or some combination of these strategies.

"At least we have an accurate model that tells where the questions are," Tyson said. "Computational cell biologists address puzzles like this one by building reliable mathematical models, based on basic principles of physics and chemistry, that address the roles of noise and noise reduction mechanisms in living cells."

Tyson, Baumann, and Paul are lead investigators on an NIH National Institute of General Medical Sciences funded research project that also includes Yang Cao, assistant professor; Cliff Shaffer, professor; Layne Watson, professor; and Adrian Sandu, associate professor, all of Virginia Tech's computer science department in the College of Engineering.

The group is continuing to build more elaborate and accurate models of molecular noise in the cell cycle control system of yeast cells and to compare these models to the latest experimental measurements of molecular fluctuations in single cells.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>