Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria share an ancestor with SAR11, a globally significant marine microbe

26.07.2011
Billions of years ago, an astounding evolutionary event occurred: certain bacteria became obliged to live inside other cells, thus starting a chain of events that resulted in what is now the mitochondria, an organelle found in all eukaryotic cells.

A recent study by researchers at the University of Hawaii – Manoa (UHM) and the Oregon State University (OSU) provides strong evidence that mitochondria share a common evolutionary ancestor with a lineage of marine bacteria known as SAR11, arguably the most abundant group of microorganisms on Earth.


This is an electron micrograph of SAR11 strain HIMB4 cultured from Kaneohe Bay, Oahu, Hawaii. Credit: Michael Rappe, SOEST/UHM

"This is a very exciting discovery," says Michael Rappe, Associate Researcher at the Hawaii Institute of Marine Biology in the School of Ocean and Earth Science and Technology (SOEST) at UHM. "The results that we present make sense in a lot of ways: the physiology of SAR11 makes them more apt to be dependent on other organisms, and based on the contemporary abundance of SAR11 in the global ocean, the ancestral lineage may have also been abundant in the ancient ocean, increasing encounters between this bacterial lineage with the host of the original symbiosis event."

In order to understand the evolutionary history of the SAR11 clade of marine bacteria, colleagues at Oregon State University compared the genomics of mitochondria from diverse supergroups of eukaryotes (including Excavata, Chromalveolata, and Archaeplastida) with the genomics of SAR11 strains isolated by Rappe's laboratory using several interconnected computer programs. This approach provided highly sophisticated and thorough phylogenetic analysis of these genomes. In addition to discovering the evolutionary connection between mitochondria and SAR11, the phylogenomics-based assessment of the diversity of this group (i.e. an assessment based on the entire genome, rather than single genes) provided substantial support for proposing a new family of bacteria, Pelagibacteraceae, fam. nov. "The implication is that the lineage of highly abundant marine bacteria known as SAR11 contains a significant amount of genetic diversity, which potentially indicates significant diversity in metabolism," notes Rappe.

Rappe and colleagues at SOEST and OSU continue to grow new strains of SAR11 and probe their genomes to further understand their metabolic potential and how they have become so successful in the global ocean.

Nature Scientific Reports: Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade, DOI:10.1038/srep00013

Marcie Grabowski | EurekAlert!
Further information:
http://www.hawaii.edu

Further reports about: Earth's magnetic field OSU Oregon SAR11 global ocean marine bacteria mitochondria

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>