Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria Separate Their Waste

29.11.2013
Freiburg researcher shows that cellular power plants collect and break down damaged molecules

In order to protect themselves from harmful substances, cells need to keep the mitochondria – the boiler room, so to speak – shipshape. Up to now, it was unclear whether this housekeeping work involves sorting out defective proteins when they digest mitochondria.


Yeast cells digest their mitochondria in long-time cultures. This process is called mitophagy. Proteins that are digested at a different speed are marked with a fluorescent dye. (© Joern Dengjel)

Dr. Joern Dengjel from the Center for Biological Systems Analysis (ZBSA), Freiburg Institute for Advanced Studies (FRIAS), and the Cluster of Excellence BIOSS Centre for Biological Signalling Studies of the University of Freiburg has now discovered in collaboration with researchers from the Hebrew University in Jerusalem, Israel, that the proteins are sorted out during the constant fusion and fission of mitochondria. The team published their findings in the journal Nature Communications.

The process of mitophagy, in which tiny digestive bubbles surround the mitochondria, serves to recycle waste for the cell. Damaged proteins can no longer carry out their function correctly and need to be broken down. Errors in the digestion of mitochondria appear in old age and in the case of neurodegenerative diseases like Parkinson’s and Alzheimer’s. A better understanding of mitophagy could be the key to counteracting the faulty degradation of cellular components, potentially enabling researchers to develop new therapies for neurodegenerative diseases.

In contrast to bacteria, yeast cells posses mitochondria and are also easy to grow in the laboratory. The researchers used yeasts to observe the processes of mitophagy. Dr. Hagai Abeliovich from the Hebrew University developed a new method for making yeast cells digest mitochondria. Currently, researchers accomplish this by placing stress on the cells with chemicals.

With the new method, yeast cells in long-term cultures begin digesting mitochondria of their own accord – as soon as they have used up all available nutrients. During mitophagy Dengjel succeeded in measuring whether all proteins inside the mitochondria were broken down at the same speed. Indeed, the cell broke down some proteins more quickly than others. When he observed the cells under a fluorescence microscope, he ascertained that the marked proteins in the mitochondria also behaved differently. They appear to be sorted.

The rules by which the sorting is carried out are as yet unknown. However, the researchers demonstrated that mitochondrial dynamics are involved: Mitochondria fuse and divide constantly, forming a network in the process. Genetically modified yeasts that lack these dynamics but form small, round mitochondria exhibit no sorting of the proteins. “The damaged proteins are sorted slowly into an area of the network with each fusion and fission. This mitochondrion is marked and broken down,” says Dengjel. In other words, mitophagy plays the role of garbage collector, separating and recycling waste for the cell. Now Dengjel wants to find out what characterizes the proteins that are sorted out.

Original publication:
H. Abeliovich, M. Zarei, K.T.G. Rigbolt, R.J. Youle and J. Dengjel (2013) Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy, Nature Communications 4, Nr. 2789 doi:10.1038/ncomms3789
Contact:
Dr. Jörn Dengjel
Center for Biological Systems Analysis (ZBSA)
Freiburg Institute for Advanced Studies (FRIAS)
BIOSS Centre for Biological Signalling Studies
Universität Freiburg
Tel.: 0761/203-97208
E-Mail: joern.dengjel@frias.uni-freiburg.de

Dr. Jörn Dengjel | Universität Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>