Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers develop a better way to see molecules at work in living brain cells

08.10.2010
New method helps explain synapse formation

By creating a better way to see molecules at work in living brain cells, researchers affiliated with MIT's Picower Institute for Learning and Memory and the MIT Department of Chemistry are helping elucidate molecular mechanisms of synapse formation.

These studies could also help further understanding of how synapses go awry in developmental diseases such as autism and Fragile X syndrome. The study will appear in the Oct. 7 issue of Cell.

Using the new technique, which is more accurate and sensitive than existing methods, the researchers found that certain protein-protein interactions can affect early phases of synapse maturation. Their work will help scientists understand exactly how two adjacent neurons form a synapse—the meeting point where information transfer among brain cells occurs. This method provides information on the dynamics of proteins in synapses on a minute-by-minute time scale, the researchers said.

"How nascent contacts mature into excitatory or inhibitory synapses is an area of intense interest," said Amar Thyagarajan, Autism Speaks Postdoctoral Fellow in the laboratory of Alice Y. Ting, associate professor of chemistry. "Trans-synaptic signaling complexes seem like a good place to start looking for clues to this process since they mediate signaling into the pre- and post-synaptic cells during this process."

Study co-authors Thyagarajan and Ting are Picower Institute affiliates.

The researchers studied the interaction of the proteins neurexin and neuroligin on the surface of neurons. These adhesion molecules--two of many in the brain that regulate synapse formation, maturation, function and plasticity--not only function as the "glue" that hold neurons together but also mediate signaling so that the appropriate molecular components are recruited for the pre- and postsynaptic cells.

Neurexins and neuroligins can be thought of as a chemical bridge and communication network that spans the synaptic cleft.

Called BLINC (Biotin Labeling of Intercellular Contacts), the new technique creates a fluorescent signal only when neurexin and neuroligin interact. "The only way for a BLINC signal to occur is when two neurons contact each other," Thyagarajan said.

For a long time, it had been known that neurexins and neuroligins are important for synapse maturation. However, their exact function was unclear since most previous studies used indirect methods such as manipulating gene expression to infer function.

"Our motivation was that if we could come up with a way to directly observe this complex, then maybe we could better understand its function in synapse maturation," Thyagarajan said.

"We developed BLINC to visualize this complex in live synapses in culture. We then used BLINC in different modalities to discover that synaptic activity causes the neurexin-neuroligin complex to grow in size," he said. "This growth is necessary for the recruitment of AMPA receptors to young synapses.

"AMPA receptor recruitment is a hallmark of excitatory synapse maturation, so our study demonstrated how a trans-synaptic complex can affect early phases of synapse maturation," Thyagarajan said.

Source: "Imaging Activity-Dependent Regulation of Neurexin-Neuroligin Interactions Using trans-Synaptic Enzymatic Biotinylation," by Amar Thyagarajan and Alice Y. Ting. Cell, 7 October, 2010.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: AMPA BLINC Picower brain cell cell death synapse formation

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>