Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers develop a better way to see molecules at work in living brain cells

08.10.2010
New method helps explain synapse formation

By creating a better way to see molecules at work in living brain cells, researchers affiliated with MIT's Picower Institute for Learning and Memory and the MIT Department of Chemistry are helping elucidate molecular mechanisms of synapse formation.

These studies could also help further understanding of how synapses go awry in developmental diseases such as autism and Fragile X syndrome. The study will appear in the Oct. 7 issue of Cell.

Using the new technique, which is more accurate and sensitive than existing methods, the researchers found that certain protein-protein interactions can affect early phases of synapse maturation. Their work will help scientists understand exactly how two adjacent neurons form a synapse—the meeting point where information transfer among brain cells occurs. This method provides information on the dynamics of proteins in synapses on a minute-by-minute time scale, the researchers said.

"How nascent contacts mature into excitatory or inhibitory synapses is an area of intense interest," said Amar Thyagarajan, Autism Speaks Postdoctoral Fellow in the laboratory of Alice Y. Ting, associate professor of chemistry. "Trans-synaptic signaling complexes seem like a good place to start looking for clues to this process since they mediate signaling into the pre- and post-synaptic cells during this process."

Study co-authors Thyagarajan and Ting are Picower Institute affiliates.

The researchers studied the interaction of the proteins neurexin and neuroligin on the surface of neurons. These adhesion molecules--two of many in the brain that regulate synapse formation, maturation, function and plasticity--not only function as the "glue" that hold neurons together but also mediate signaling so that the appropriate molecular components are recruited for the pre- and postsynaptic cells.

Neurexins and neuroligins can be thought of as a chemical bridge and communication network that spans the synaptic cleft.

Called BLINC (Biotin Labeling of Intercellular Contacts), the new technique creates a fluorescent signal only when neurexin and neuroligin interact. "The only way for a BLINC signal to occur is when two neurons contact each other," Thyagarajan said.

For a long time, it had been known that neurexins and neuroligins are important for synapse maturation. However, their exact function was unclear since most previous studies used indirect methods such as manipulating gene expression to infer function.

"Our motivation was that if we could come up with a way to directly observe this complex, then maybe we could better understand its function in synapse maturation," Thyagarajan said.

"We developed BLINC to visualize this complex in live synapses in culture. We then used BLINC in different modalities to discover that synaptic activity causes the neurexin-neuroligin complex to grow in size," he said. "This growth is necessary for the recruitment of AMPA receptors to young synapses.

"AMPA receptor recruitment is a hallmark of excitatory synapse maturation, so our study demonstrated how a trans-synaptic complex can affect early phases of synapse maturation," Thyagarajan said.

Source: "Imaging Activity-Dependent Regulation of Neurexin-Neuroligin Interactions Using trans-Synaptic Enzymatic Biotinylation," by Amar Thyagarajan and Alice Y. Ting. Cell, 7 October, 2010.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: AMPA BLINC Picower brain cell cell death synapse formation

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>