Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing enzyme linked to drug addiction

18.06.2013
A missing brain enzyme increases concentrations of a protein related to pain-killer addiction, according to an animal study. The results will be presented Monday at The Endocrine Society's 95th Annual Meeting in San Francisco.

Opioids are pain-killing drugs, derived from the opium plant, which block signals of pain between nerves in the body. They are manufactured in prescription medications like morphine and codeine, and also are found in some illegal drugs, like heroin. Both legal and illegal opioids can be highly addictive.

In addition to the synthetic opioids, natural opioids are produced by the body. Most people have heard of the so-called feel-good endorphins, which are opioid-like proteins produced by various organs in the body in response to certain activities, like exercise.

Drug addiction occurs, in part, because opioid-containing drugs alter the brain's biochemical balance of naturally produced opioids. Nationwide, drug abuse of opioid-containing prescription drugs is skyrocketing, and researchers are trying to identify the risk factors that differentiate people who get addicted from those who do not.

In this particular animal model, researchers eliminated an enzyme called prohormone convertase 2, or PC2, which normally converts pre-hormonal substances into active hormones in certain parts of the brain. Previous research by this team demonstrated that PC2 levels increase after long-term morphine treatment, according to study lead author Theodore C. Friedman, MD, PhD, chairman of the internal medicine department at Charles R. Drew University of Medicine and Science in Los Angeles.
"This raises the possibility that PC2-derived peptides may be involved in some of the addiction parameters related to morphine," Friedman said. For this study, Friedman and his co-researchers analyzed the effects of morphine on the brain after knocking out the PC2 enzyme in mice. Morphine normally binds to a protein on cells known as the mu opioid receptor, or MOR. They found that MOR concentrations were higher in mice lacking PC2, compared to other mice.

To analyze the effects of PC2 elimination, the researchers examined MOR levels in specific parts of the brain that are related to pain relief, as well as to behaviors associated with reward and addiction. They measured these levels using a scientific test called immunohistochemistry, which uses specific antibodies to identify the cells in which proteins are expressed.

"In this study, we found that PC2 knockout mice have higher levels of MOR in brain regions related to drug addiction," Friedman said. "We conclude that PC2 regulates endogenous opioids involved in the addiction response and in its absence, up-regulation of MOR expression occurs in key brain areas related to drug addiction."

The National Institutes of Health's National Institute on Drug Abuse funded the study.

Aaron Lohr | EurekAlert!
Further information:
http://www.endocrine.org

Further reports about: MOR Missing Persons PC2 brain area brain region drug addiction risk factor

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>