Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Misfolded proteins: The fundamental problem is aging

25.08.2009
Proteins are essential for all biological activities and the health of the cell. Misfolded and damaged proteins spell trouble and are common to all human neurodegenerative diseases and many other age-associated diseases. But when during a lifespan do proteins start to misbehave?

A new Northwestern University study reports that protein damage can be detected much earlier than we had thought, long before individuals exhibit symptoms. But the study also suggests if we intervene early enough, the damage could be delayed.

In studying seven different proteins of the worm C. elegans, the researchers discovered that each protein misfolds at the same point: during early adulthood and long before the animal shows any behavioral, or physiological, change. (Each protein had a minor mutation that affects folding.)

The misfolding coincided with the loss of a critical protective cellular mechanism: the ability to activate the heat shock response, an ancient genetic switch that senses damaged proteins and protects cells by preventing protein misfolding.

The results will be published online during the week of Aug. 24 by the Proceedings of the National Academy of Sciences (PNAS).

"I didn't expect the results to be so dramatic, for these different proteins that vary in concentration and are expressed in diverse tissues to collapse at the same time," said lead researcher Richard I. Morimoto. "This suggests the animal's protective cellular stress response becomes deficient during aging."

Could the damaging events of protein misfolding be prevented or at least delayed?

To find out, the researchers gave the animals the equivalent of a vitamin, boosting the heat shock response early in the animal's development, prior to protein damage. Now, instead of misfolding around day four, the equivalent of early adulthood in the worm, the proteins didn't start misfolding until day 12. (Behavioral changes didn't appear for at least three days after misfolding. The average lifespan of the worm is 21 days.)

"Our data suggest that, in terms of therapeutics, you have to start early to prevent damage and keep cells healthy," said Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences. "When you see a loss of function, it's too late."

Genes that regulate lifespan were first discovered in C. elegans. The transparent roundworm is a favorite organism of biologists because its biochemical environment and fundamental mechanisms are similar to that of human beings and its genome, or complete genetic sequence, is known.

The title of the PNAS paper is "Collapse of Proteostasis Represents an Early Molecular Event in C. elegans Aging." In addition to Morimoto, other authors of the paper are Anat Ben-Zvi and Elizabeth A. Miller, both from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>