Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror Images United

29.10.2009
Simultaneous binding of both enantiomers of a drug to an enzyme

In the binding pockets of enzymes their natural binding partners fit exactly. The principle by which many pharmacological agents work also relies on the fact that these substances fit exactly into the pockets of specific enzymes.

Not only the chemical properties but also the shape of the pocket determines if a molecule fits or not. Just as a left glove doesn’t fit onto a right hand, only one of the mirror images normally fits into the binding site of the enzyme. Molecules that are mirror images are called enantiomers.

Rolf Breinbauer, Wulf Blankenfeldt, and Matthias Mentel at the Max Planck Institute for Molecular Physiology in Dortmund, the University of Leipzig, and the Technical University of Graz (Austria) report a previously unknown binding variation in the journal Angewandte Chemie: for the first time, they have discovered a drug whose two enantiomers can both dock in the pocket of an enzyme at the same time.

In most cases, only one enantiomer of a pharmacon is effective; the other is simply unnecessary ballast. Occasionally, the mirror-image molecule can even inhibit the activity of the pharmacon, produce counterproductive effects, or cause other undesired side effects. In isolated cases, these can turn out to be dangerous, as was made painfully evident by the thalidomide scandal: Whereas one enantiomer of thalidomide is a well-tolerated, effective sleep-inducing and sedative drug, its mirror image led to severe deformations in the unborn children of pregnant patients.

Consequently, legal regulations today require that only enantiomerically pure medications be brought on the market. In the screening used in pharmaceutical research, mixtures of the two mirror images are first tested together. Subsequently, the binding properties of both forms with the target protein are examined to see which of the two forms is the active one. These experiments have led to the understanding that only a single enantiomer fits into the binding site. In rare cases, it has also been observed that both enantiomers can individually bind to the enzyme, but never at the same time. The scientists were surprised to discover entirely different behavior from enantiomers: Both of the enantiomers of an inhibitor being tested were bound simultaneously in the pocket of the enzyme.

The discovery may open up interesting new possibilities in pharmaceutical research, for example in fragment-based approaches. In this technique, small bioactive molecular fragments are initially sought for use in combination with other fragments to construct effective pharmaceuticals.

Author: Rolf Breinbauer, Technische Universität Graz (Austria), https://online.tu-graz.ac.at/tug_online/visitenkarte.show_vcard?cperson_nr=61928

Title: The Active Site of an Enzyme Can Host Both Enantiomers of a Racemic Ligand Simultaneously

Angewandte Chemie International Edition, doi: 10.1002/anie.200902997

Rolf Breinbauer | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>