Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mine-Hunting Software Helping Doctors to Identify Rare Cells in Human Cancer

07.10.2011
Medical researchers are demonstrating that Office of Naval Research (ONR)-funded software developed for finding and recognizing undersea mines can help doctors identify and classify cancer-related cells.

“The results are spectacular,” said Dr. Larry Carin, professor at Duke University and developer of the technology. “This could be a game-changer for medical research.”

The problem that physicians encounter in analyzing images of human cells is surprisingly similar to the Navy’s challenge of finding undersea mines.

When examining tissue samples, doctors must sift through hundreds of microscopic images containing millions of cells. To pinpoint specific cells of interest, they use an automated image analysis software toolkit called FARSIGHT, or Fluorescence Association Rules for Quantitative Insight. Funded by the National Institutes of Health (NIH) and the Defense Advanced Research Projects Agency (DARPA), FARSIGHT identifies cells based upon a subset of examples initially labeled by a physician. But the resulting classifications can be erroneous because the computer applies tags based on the small sampling.

By adding ONR’s active learning software algorithms, the identification of cells is more accurate and FARSIGHT’s performance more consistent, researchers said. The enhanced toolkit also requires physicians to label fewer cell samples because the algorithm automatically selects the best set of examples to teach the software.

“This is not a typical Navy transition,” said Carin. “But it is a transition to a very important medical tool used literally at hospitals around the world. There is a real chance this may save lives in the future.”

A medical team at the University of Pennsylvania is applying the ONR algorithms, embedded into FARSIGHT, to examine tumors from kidney cancer patients. Focusing on endothelial cells that form the blood vessels that supply the tumors with oxygen and nutrients, the research could one day improve drug treatments for different types of kidney cancer, also known as renal cell carcinoma.

“With the computer program having learned to pick out an endothelial cell, we have now automated this process, and it seems to be highly accurate,” said Dr. William Lee, an associate professor of medicine, hematology and oncology at the university who is leading the research effort. “We can begin to study the endothelial cells of human cancer—something that is not being done because it’s so difficult and time-consuming to do.”

It usually takes days, even weeks, for a pathologist to manually pick out all the endothelial cells in 100 images. The enhanced FARSIGHT toolkit can accomplish the same feat in a few hours with human accuracy.

“This is an important NIH-funded clinical study that we’re supporting with FARSIGHT, and Dr. Carin’s active learning system has been a great success,” said Dr. Badri Roysam, an electrical and computer engineering professor at the University of Houston and program investigator for FARSIGHT.

ONR’s active learning software was originally developed to allow robotic mine-hunting systems to behave more like humans when they are uncertain about how to classify an object. Using information theory, the software asks a human to provide labels for those items. This feature is valuable in mine warfare, where identifying unknown objects beneath the ocean has been accomplished traditionally by sending in divers.

“This is dangerous and is exactly what we’re trying to eliminate,” said Dr. Jason Stack, the program officer at ONR who funded Carin’s research. “Developing unmanned systems that are not only autonomous but can also continuously learn from the warfighters employing them is core to our strategy. It speeds up mine countermeasures and helps get the man out of the minefield.”

About the Office of Naval Research
The Department of the Navy’s Office of Naval Research (ONR) provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.
Office of Naval Research
Corporate Strategic Communications
875 N. Randolph St., #1224
Arlington, Va. 22203-1771
Office: (703) 696-5031
Fax: (703) 696-5940
Email: onrcsc@onr.navy.mil
Web: www.onr.navy.mil
Facebook: www.facebook.com/officeofnavalresearch

Peter Vietti | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>