Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mine-Hunting Software Helping Doctors to Identify Rare Cells in Human Cancer

07.10.2011
Medical researchers are demonstrating that Office of Naval Research (ONR)-funded software developed for finding and recognizing undersea mines can help doctors identify and classify cancer-related cells.

“The results are spectacular,” said Dr. Larry Carin, professor at Duke University and developer of the technology. “This could be a game-changer for medical research.”

The problem that physicians encounter in analyzing images of human cells is surprisingly similar to the Navy’s challenge of finding undersea mines.

When examining tissue samples, doctors must sift through hundreds of microscopic images containing millions of cells. To pinpoint specific cells of interest, they use an automated image analysis software toolkit called FARSIGHT, or Fluorescence Association Rules for Quantitative Insight. Funded by the National Institutes of Health (NIH) and the Defense Advanced Research Projects Agency (DARPA), FARSIGHT identifies cells based upon a subset of examples initially labeled by a physician. But the resulting classifications can be erroneous because the computer applies tags based on the small sampling.

By adding ONR’s active learning software algorithms, the identification of cells is more accurate and FARSIGHT’s performance more consistent, researchers said. The enhanced toolkit also requires physicians to label fewer cell samples because the algorithm automatically selects the best set of examples to teach the software.

“This is not a typical Navy transition,” said Carin. “But it is a transition to a very important medical tool used literally at hospitals around the world. There is a real chance this may save lives in the future.”

A medical team at the University of Pennsylvania is applying the ONR algorithms, embedded into FARSIGHT, to examine tumors from kidney cancer patients. Focusing on endothelial cells that form the blood vessels that supply the tumors with oxygen and nutrients, the research could one day improve drug treatments for different types of kidney cancer, also known as renal cell carcinoma.

“With the computer program having learned to pick out an endothelial cell, we have now automated this process, and it seems to be highly accurate,” said Dr. William Lee, an associate professor of medicine, hematology and oncology at the university who is leading the research effort. “We can begin to study the endothelial cells of human cancer—something that is not being done because it’s so difficult and time-consuming to do.”

It usually takes days, even weeks, for a pathologist to manually pick out all the endothelial cells in 100 images. The enhanced FARSIGHT toolkit can accomplish the same feat in a few hours with human accuracy.

“This is an important NIH-funded clinical study that we’re supporting with FARSIGHT, and Dr. Carin’s active learning system has been a great success,” said Dr. Badri Roysam, an electrical and computer engineering professor at the University of Houston and program investigator for FARSIGHT.

ONR’s active learning software was originally developed to allow robotic mine-hunting systems to behave more like humans when they are uncertain about how to classify an object. Using information theory, the software asks a human to provide labels for those items. This feature is valuable in mine warfare, where identifying unknown objects beneath the ocean has been accomplished traditionally by sending in divers.

“This is dangerous and is exactly what we’re trying to eliminate,” said Dr. Jason Stack, the program officer at ONR who funded Carin’s research. “Developing unmanned systems that are not only autonomous but can also continuously learn from the warfighters employing them is core to our strategy. It speeds up mine countermeasures and helps get the man out of the minefield.”

About the Office of Naval Research
The Department of the Navy’s Office of Naval Research (ONR) provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.
Office of Naval Research
Corporate Strategic Communications
875 N. Randolph St., #1224
Arlington, Va. 22203-1771
Office: (703) 696-5031
Fax: (703) 696-5940
Email: onrcsc@onr.navy.mil
Web: www.onr.navy.mil
Facebook: www.facebook.com/officeofnavalresearch

Peter Vietti | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>