Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two million euros for infection research

17.12.2013
Viruses, bacteria, and other pathogens trigger changes to cell membranes in humans in the event of an infection.

What exactly happens there will be investigated by a new research group at the universities of Würzburg and Duisburg-Essen. They will receive around two million euros for their work.

Contacts between pathogens and human cell membranes play a major role in an infection: the viruses or bacteria dock to special receptor proteins there. In so doing, they trigger processes that enable them to penetrate the cell, among other things. But the immune system’s defensive reactions, such as the activation of T cells, are also controlled by these processes.

The receptors often sit in well-defined regions of the cell membrane, where particularly large numbers of sphingolipid molecules are gathered. Simply put, these molecules consist of a head and tail. “If pathogens dock there, an enzyme is activated that decapitates the sphingolipids, creating ceramides,” explains virology professor Sibylle Schneider-Schaulies from the University of Würzburg. This then results in further changes to the membrane.

Sights set on measles viruses and other pathogens

It is precisely these membrane changes that will receive the attention of a new research group approved by the German Research Foundation (DFG) in early December. “We intend to make the changes visible and to observe them,” says the Würzburg virologist: “If we can understand their importance to the disease process, it might be possible to produce new treatments.”

The research group will focus on the following pathogens: measles viruses, meningococci (pathogens that cause meningitis, among other diseases), mycobacteria (tuberculosis), and gonococci (gonorrhea).

Facts about the new research group

Sibylle Schneider-Schaulies is the spokesperson for the new group (“Sphingolipid Dynamics in Infection Control”). It has brought together research teams from the universities of Würzburg and Duisburg-Essen. The DFG will provide the project with around two million euros in funding over the next three years; much of this money will be used to finance doctoral positions.

Research teams involved

From the Institute of Molecular Biology at the University of Duisburg-Essen, the teams led by Heike Grassmé and Professor Erich Gulbins are involved, with the latter also acting as the deputy spokesperson for the research group.

Joining them from the University of Würzburg’s Institute of Virology and Immunobiology are Niklas Beyersdorf, Nora Müller, Jürgen Schneider-Schaulies, and Sibylle Schneider-Schaulies. Also involved are the Würzburg scientists Thomas Rudel (Microbiology/Biocenter), Markus Sauer (Biotechnology and Biophysics/Biocenter), Alexandra Schubert-Unkmeir (Hygiene and Microbiology), and Jürgen Seibel (Organic Chemistry).

Information about DFG research groups

In early December, the DFG set up four new research groups all at the same time (University of Würzburg, University of Bremen, Dresden University of Technology, and Ludwig Maximilian University of Munich). According to a statement by the DFG, research consortia should provide scientists with the opportunity to address current issues in their fields and to develop new methods for tackling them. All DFG research groups work across various locations and disciplines.

Contact

Prof. Dr. Sibylle Schneider-Schaulies, spokesperson for the DFG research group “Sphingolipid Dynamics in Infection Control”, Institute of Virology and Immunobiology, University of Würzburg, T +49 (0)931 31-81566, s-s-s@vim.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Infection Virology cell membrane immunobiology receptor protein two million

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>