Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two million euros for infection research

17.12.2013
Viruses, bacteria, and other pathogens trigger changes to cell membranes in humans in the event of an infection.

What exactly happens there will be investigated by a new research group at the universities of Würzburg and Duisburg-Essen. They will receive around two million euros for their work.

Contacts between pathogens and human cell membranes play a major role in an infection: the viruses or bacteria dock to special receptor proteins there. In so doing, they trigger processes that enable them to penetrate the cell, among other things. But the immune system’s defensive reactions, such as the activation of T cells, are also controlled by these processes.

The receptors often sit in well-defined regions of the cell membrane, where particularly large numbers of sphingolipid molecules are gathered. Simply put, these molecules consist of a head and tail. “If pathogens dock there, an enzyme is activated that decapitates the sphingolipids, creating ceramides,” explains virology professor Sibylle Schneider-Schaulies from the University of Würzburg. This then results in further changes to the membrane.

Sights set on measles viruses and other pathogens

It is precisely these membrane changes that will receive the attention of a new research group approved by the German Research Foundation (DFG) in early December. “We intend to make the changes visible and to observe them,” says the Würzburg virologist: “If we can understand their importance to the disease process, it might be possible to produce new treatments.”

The research group will focus on the following pathogens: measles viruses, meningococci (pathogens that cause meningitis, among other diseases), mycobacteria (tuberculosis), and gonococci (gonorrhea).

Facts about the new research group

Sibylle Schneider-Schaulies is the spokesperson for the new group (“Sphingolipid Dynamics in Infection Control”). It has brought together research teams from the universities of Würzburg and Duisburg-Essen. The DFG will provide the project with around two million euros in funding over the next three years; much of this money will be used to finance doctoral positions.

Research teams involved

From the Institute of Molecular Biology at the University of Duisburg-Essen, the teams led by Heike Grassmé and Professor Erich Gulbins are involved, with the latter also acting as the deputy spokesperson for the research group.

Joining them from the University of Würzburg’s Institute of Virology and Immunobiology are Niklas Beyersdorf, Nora Müller, Jürgen Schneider-Schaulies, and Sibylle Schneider-Schaulies. Also involved are the Würzburg scientists Thomas Rudel (Microbiology/Biocenter), Markus Sauer (Biotechnology and Biophysics/Biocenter), Alexandra Schubert-Unkmeir (Hygiene and Microbiology), and Jürgen Seibel (Organic Chemistry).

Information about DFG research groups

In early December, the DFG set up four new research groups all at the same time (University of Würzburg, University of Bremen, Dresden University of Technology, and Ludwig Maximilian University of Munich). According to a statement by the DFG, research consortia should provide scientists with the opportunity to address current issues in their fields and to develop new methods for tackling them. All DFG research groups work across various locations and disciplines.

Contact

Prof. Dr. Sibylle Schneider-Schaulies, spokesperson for the DFG research group “Sphingolipid Dynamics in Infection Control”, Institute of Virology and Immunobiology, University of Würzburg, T +49 (0)931 31-81566, s-s-s@vim.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Infection Virology cell membrane immunobiology receptor protein two million

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>