Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milk-Maker Hormone May Help Liver Regenerate

17.10.2013
Study using animal model is published in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology

The hormone prolactin is probably best known for its role in stimulating milk production in mothers after giving birth. But prolactin also has an important function in the liver.

This organ has the highest number of prolactin receptors in the body, ports that allow this hormone to enter liver cells. There, prolactin signals these cells to multiply and new blood vessels to grow to fuel this organ’s expansion.

Wondering if these properties might be useful to encourage the liver to regrow after surgery to remove part of it—sometimes necessary to treat cancer or other liver diseases, or to donate liver tissue for transplants—Carmen Clapp of the Universidad Nacional Automoma de Mexico and her colleagues worked with animal models on both ends of a prolactin spectrum: rats that overproduced the hormone, and mice specially bred to have no prolactin receptors, the equivalent of a dearth of the hormone since prolactin can’t enter these animals’ cells.

The researchers found that the animals with extra prolactin had larger livers, regenerated their livers faster after partial removal, and were significantly more likely to survive that liver surgery compared to the animals that couldn’t process prolactin.

The article is entitled “Prolactin Promotes Normal Liver Growth, Survival, and Regeneration in Rodents.” It appears in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, published by the American Physiological Society. It is available online at http://bit.ly/17SPu23.

Methodology
The researchers made rats overproduce prolactin by implanting two extra anterior pituitary glands—the gland that produces prolactin—in the animals’ backs. To make sure the surgery itself wasn’t responsible for any effects they saw, they compared these rats to others that had a sham surgery, in which they made incisions but didn’t implant extra anterior pituitary glands. To confirm that prolactin itself was responsible for the effects they saw in the overproducers, the researchers injected some of the rats that had the real surgery with a drug that deactivated extra prolactin, bringing the overproducers’ prolactin down to baseline levels.

As a contrast to these prolactin overproducers, the researchers also studied mice that were genetically engineered to not have prolactin receptors. Thus, even though these mice made prolactin, their bodies behaved as if they had none of the hormone because their cells couldn’t process it.

The researchers measured the ratio of liver to body weight in each of the rats and mice. They tested how readily liver and liver blood vessel cells were dividing in some of the animals from each group. They also removed portions of the animals’ livers, comparing how quickly animals from each group regenerated liver tissue. Additionally, they tested the animals’ levels of interleukin-6 (IL-6), a chemical produced by cells and is kept in check by prolactin. IL-6 can stimulate the liver to repair itself at low levels but can hinder this self-repair at higher levels.

Results
The researchers found that rats that overproduced prolactin had larger livers in proportion to their body weight compared to rats that had normal prolactin levels and those that overproduced prolactin but received the nullifying drug. These overproducers also had significantly larger livers in proportion to their body weight compared to the mice that couldn’t process prolactin. Liver cells and liver blood vessel cells were multiplying more readily in the prolactin overproducers than in animals in the other groups.

After the researchers removed portions of the animals’ livers, the prolactin overproducers regenerated their livers more quickly than animals from the other groups. Mice that didn’t process prolactin not only had smaller livers than the normal mice but were also significantly more likely to die in the days after surgery. Tests showed that these mice had elevated levels of IL-6, a factor that could be partially responsible for their slower healing and increased mortality.

Importance of the Findings
These findings suggest that prolactin is important both for normal liver growth and for regenerating the liver after part of it is removed, with extra prolactin providing a boost for repair mechanisms. Consequently, enhancing prolactin levels could provide a way to improve regeneration when the liver becomes damaged or diseased, or after surgery.

“The use of current medications known to increase prolactinemia (prolactin production) constitute potential therapeutic options in liver diseases, liver injuries, or after liver surgery and warrants further investigation,” the study authors write.

Study Team
In addition to Carmen Clapp, the study team also includes Bibiana Moreno-Carranza, Maite Goya-Arce, Claudia Vega, Norma Adan, Jakob Triebel, Fernando Lopez-Barrera, and Gonzalo Martinez de la Escalera, of the Universidad Nacional Autonoma de Mexico, Andres Quintanar-Stephano of the Universidad Autonoma de Aguascalientes, and Nadine Binart of Universite Paris-Sud.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

NOTE TO EDITORS: To schedule an interview with Dr. Moreno-Carranza, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/17SPu23.

Donna Krupa | Newswise
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>