Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milk-Maker Hormone May Help Liver Regenerate

17.10.2013
Study using animal model is published in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology

The hormone prolactin is probably best known for its role in stimulating milk production in mothers after giving birth. But prolactin also has an important function in the liver.

This organ has the highest number of prolactin receptors in the body, ports that allow this hormone to enter liver cells. There, prolactin signals these cells to multiply and new blood vessels to grow to fuel this organ’s expansion.

Wondering if these properties might be useful to encourage the liver to regrow after surgery to remove part of it—sometimes necessary to treat cancer or other liver diseases, or to donate liver tissue for transplants—Carmen Clapp of the Universidad Nacional Automoma de Mexico and her colleagues worked with animal models on both ends of a prolactin spectrum: rats that overproduced the hormone, and mice specially bred to have no prolactin receptors, the equivalent of a dearth of the hormone since prolactin can’t enter these animals’ cells.

The researchers found that the animals with extra prolactin had larger livers, regenerated their livers faster after partial removal, and were significantly more likely to survive that liver surgery compared to the animals that couldn’t process prolactin.

The article is entitled “Prolactin Promotes Normal Liver Growth, Survival, and Regeneration in Rodents.” It appears in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, published by the American Physiological Society. It is available online at http://bit.ly/17SPu23.

Methodology
The researchers made rats overproduce prolactin by implanting two extra anterior pituitary glands—the gland that produces prolactin—in the animals’ backs. To make sure the surgery itself wasn’t responsible for any effects they saw, they compared these rats to others that had a sham surgery, in which they made incisions but didn’t implant extra anterior pituitary glands. To confirm that prolactin itself was responsible for the effects they saw in the overproducers, the researchers injected some of the rats that had the real surgery with a drug that deactivated extra prolactin, bringing the overproducers’ prolactin down to baseline levels.

As a contrast to these prolactin overproducers, the researchers also studied mice that were genetically engineered to not have prolactin receptors. Thus, even though these mice made prolactin, their bodies behaved as if they had none of the hormone because their cells couldn’t process it.

The researchers measured the ratio of liver to body weight in each of the rats and mice. They tested how readily liver and liver blood vessel cells were dividing in some of the animals from each group. They also removed portions of the animals’ livers, comparing how quickly animals from each group regenerated liver tissue. Additionally, they tested the animals’ levels of interleukin-6 (IL-6), a chemical produced by cells and is kept in check by prolactin. IL-6 can stimulate the liver to repair itself at low levels but can hinder this self-repair at higher levels.

Results
The researchers found that rats that overproduced prolactin had larger livers in proportion to their body weight compared to rats that had normal prolactin levels and those that overproduced prolactin but received the nullifying drug. These overproducers also had significantly larger livers in proportion to their body weight compared to the mice that couldn’t process prolactin. Liver cells and liver blood vessel cells were multiplying more readily in the prolactin overproducers than in animals in the other groups.

After the researchers removed portions of the animals’ livers, the prolactin overproducers regenerated their livers more quickly than animals from the other groups. Mice that didn’t process prolactin not only had smaller livers than the normal mice but were also significantly more likely to die in the days after surgery. Tests showed that these mice had elevated levels of IL-6, a factor that could be partially responsible for their slower healing and increased mortality.

Importance of the Findings
These findings suggest that prolactin is important both for normal liver growth and for regenerating the liver after part of it is removed, with extra prolactin providing a boost for repair mechanisms. Consequently, enhancing prolactin levels could provide a way to improve regeneration when the liver becomes damaged or diseased, or after surgery.

“The use of current medications known to increase prolactinemia (prolactin production) constitute potential therapeutic options in liver diseases, liver injuries, or after liver surgery and warrants further investigation,” the study authors write.

Study Team
In addition to Carmen Clapp, the study team also includes Bibiana Moreno-Carranza, Maite Goya-Arce, Claudia Vega, Norma Adan, Jakob Triebel, Fernando Lopez-Barrera, and Gonzalo Martinez de la Escalera, of the Universidad Nacional Autonoma de Mexico, Andres Quintanar-Stephano of the Universidad Autonoma de Aguascalientes, and Nadine Binart of Universite Paris-Sud.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

NOTE TO EDITORS: To schedule an interview with Dr. Moreno-Carranza, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/17SPu23.

Donna Krupa | Newswise
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>