Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milk-Maker Hormone May Help Liver Regenerate

17.10.2013
Study using animal model is published in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology

The hormone prolactin is probably best known for its role in stimulating milk production in mothers after giving birth. But prolactin also has an important function in the liver.

This organ has the highest number of prolactin receptors in the body, ports that allow this hormone to enter liver cells. There, prolactin signals these cells to multiply and new blood vessels to grow to fuel this organ’s expansion.

Wondering if these properties might be useful to encourage the liver to regrow after surgery to remove part of it—sometimes necessary to treat cancer or other liver diseases, or to donate liver tissue for transplants—Carmen Clapp of the Universidad Nacional Automoma de Mexico and her colleagues worked with animal models on both ends of a prolactin spectrum: rats that overproduced the hormone, and mice specially bred to have no prolactin receptors, the equivalent of a dearth of the hormone since prolactin can’t enter these animals’ cells.

The researchers found that the animals with extra prolactin had larger livers, regenerated their livers faster after partial removal, and were significantly more likely to survive that liver surgery compared to the animals that couldn’t process prolactin.

The article is entitled “Prolactin Promotes Normal Liver Growth, Survival, and Regeneration in Rodents.” It appears in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, published by the American Physiological Society. It is available online at http://bit.ly/17SPu23.

Methodology
The researchers made rats overproduce prolactin by implanting two extra anterior pituitary glands—the gland that produces prolactin—in the animals’ backs. To make sure the surgery itself wasn’t responsible for any effects they saw, they compared these rats to others that had a sham surgery, in which they made incisions but didn’t implant extra anterior pituitary glands. To confirm that prolactin itself was responsible for the effects they saw in the overproducers, the researchers injected some of the rats that had the real surgery with a drug that deactivated extra prolactin, bringing the overproducers’ prolactin down to baseline levels.

As a contrast to these prolactin overproducers, the researchers also studied mice that were genetically engineered to not have prolactin receptors. Thus, even though these mice made prolactin, their bodies behaved as if they had none of the hormone because their cells couldn’t process it.

The researchers measured the ratio of liver to body weight in each of the rats and mice. They tested how readily liver and liver blood vessel cells were dividing in some of the animals from each group. They also removed portions of the animals’ livers, comparing how quickly animals from each group regenerated liver tissue. Additionally, they tested the animals’ levels of interleukin-6 (IL-6), a chemical produced by cells and is kept in check by prolactin. IL-6 can stimulate the liver to repair itself at low levels but can hinder this self-repair at higher levels.

Results
The researchers found that rats that overproduced prolactin had larger livers in proportion to their body weight compared to rats that had normal prolactin levels and those that overproduced prolactin but received the nullifying drug. These overproducers also had significantly larger livers in proportion to their body weight compared to the mice that couldn’t process prolactin. Liver cells and liver blood vessel cells were multiplying more readily in the prolactin overproducers than in animals in the other groups.

After the researchers removed portions of the animals’ livers, the prolactin overproducers regenerated their livers more quickly than animals from the other groups. Mice that didn’t process prolactin not only had smaller livers than the normal mice but were also significantly more likely to die in the days after surgery. Tests showed that these mice had elevated levels of IL-6, a factor that could be partially responsible for their slower healing and increased mortality.

Importance of the Findings
These findings suggest that prolactin is important both for normal liver growth and for regenerating the liver after part of it is removed, with extra prolactin providing a boost for repair mechanisms. Consequently, enhancing prolactin levels could provide a way to improve regeneration when the liver becomes damaged or diseased, or after surgery.

“The use of current medications known to increase prolactinemia (prolactin production) constitute potential therapeutic options in liver diseases, liver injuries, or after liver surgery and warrants further investigation,” the study authors write.

Study Team
In addition to Carmen Clapp, the study team also includes Bibiana Moreno-Carranza, Maite Goya-Arce, Claudia Vega, Norma Adan, Jakob Triebel, Fernando Lopez-Barrera, and Gonzalo Martinez de la Escalera, of the Universidad Nacional Autonoma de Mexico, Andres Quintanar-Stephano of the Universidad Autonoma de Aguascalientes, and Nadine Binart of Universite Paris-Sud.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

NOTE TO EDITORS: To schedule an interview with Dr. Moreno-Carranza, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/17SPu23.

Donna Krupa | Newswise
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>