Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mild-mannered metabolic helper rushes to fight invading viruses

Within cells, an ancient antiviral duo can deliver a one-two knockout to thwart invading viruses, report researchers who have just unmasked the cellular sidekick that throws the first punch. The findings mean scientists must rethink the design of antiviral immunity and how the body fends off viruses of all types, including influenza and HIV.

In the study, Children's Hospital Boston researchers found, mild-mannered organelles inside the cell known as peroxisomes can detect virus invasion signals and launch a limited antiviral offensive. Other organelles, the mitochondria, follow up with a more definitive antiviral counterattack.

"This is the first demonstration that peroxisomes are involved in immunity," said Jonathan Kagan, staff scientist in the gastroenterology division and senior author of the paper published May 6 in the online journal Cell. "This work has implications for our understanding of how we interact with infectious viruses and even bacteria."

The paper establishes a new function for peroxisomes as a cellular compartment that promotes a rapid response to viral infection. With this discovery, the researchers say, scientists need to look for other cellular parts that may do double duty as pathogen detectors. A larger volunteer army may be lurking in cells as needed for the innate immune system.

In a clinical implication, the findings suggest a new approach to rare and largely untreatable conditions known as peroxisome biogenesis disorders, Kagan said. In the most common manifestation, Zellweger syndrome, children suffer from major developmental abnormalities and die as infants. The milder disorders allow children to live into their teens. Many affected children die of lung infections such as pneumonia, which may arise from problems in the antiviral signaling scaffold due to the absence of peroxisomes, Kagan speculates. Previously, the disorders have been considered developmental and metabolic.

When they are not fighting invading microbes, peroxisomes are busy mopping up the potentially damaging free radical byproducts produced by their larger distant cousins, mitochondria, the power plants of the cell. In other house-keeping duties, peroxisomes also make and attach the lipids that grease the cellular machinery so proteins can slide into or through membranes. Both organelles grow, multiply, and shrink in response to metabolic demands.

Peroxisomes acquire their virus-fighting power from a cloak of mitochondrial antiviral signaling protein, or MAVS. Five years ago, MAVS proteins were discovered on mitochondria, a surprising location for which they were named, and shown to be vital to the immune system's ability to fight infections.

MAVS proteins are found in all cells in the body, Kagan said, but until now they were only known to be draped around mitochondria. The latest study started as a search for MAVS on peroxisomes, an idea born from recent reports of other proteins shared by peroxisomes and mitochondria. On a graduate studies sabbatical from Vienna, first author Evelyn Dixit stained cells for MAVS and found the proteins on peroxisomes.

Next, she observed, the same MAVS proteins activated different antiviral immune responses, depending upon the organelle they adorned. "The difference was that the antiviral response was quicker and transient when it originated from peroxisomes compared to mitochondria," Dixit said.

In another difference, the peroxisomal MAVS turned on a subset of antiviral genes without a secreting interferon. By contrast, mitochondrial MAVS triggers interferon production and release, which alerts both the cell and its neighbors to mount a larger immune response.

"Seeing interferon-stimulated genes but no interferon was at first quite aggravating," Dixit said. "We thought we did something wrong. Then we had to turn our thinking around 180 degrees and accept that it was not a mistake. Peroxisomal MAVS leads to interferon-stimulated genes while bypassing interferon secretion."

The differential response may be a way that different kinds of cells can customize their antiviral responses to the special needs of different tissues, Kagan suggests. For example, the interferon response shuts down protein synthesis, promotes inflammation, and causes a general toxic effect that some tissues may be able to handle better than others, such as the intestines.

Without interferon, peroxisomes could mount a limited response in sensitive tissues, such as nerves, eyes, or heart muscle. "We have speculated that certain tissues may only use mitochondria or only use peroxisomes," Kagan said.

"At the end of the day, we found antiviral signaling can occur from peroxisomes and from mitochondria," he said. "Only from the peroxisome do we see a rapid response, and that is sufficient to control viruses, but it cannot eliminate them. Signaling from both is needed to effectively knock them out."

CITATION: "Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity"

Evelyn Dixit,1,2 Steeve Boulant,3,4 Yijing Zhang,1 Amy S. Lee,3,4 Charlotte Odendall,1 Bennett Shum,5 Nir Hacohen,5 Zhijian J. Chen,6,7 Sean P. Whelan,3,4 Marc Fransen,8 Max L. Nibert,3,4 Giulio Superti-Furga,2 and Jonathan C. Kagan1,*

1Harvard Medical School and Division of Gastroenterology, Children's Hospital Boston, Boston, MA 02115, USA
2CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
3Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
4Training Programs in Biological and Biomedical Sciences and Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
5Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
6Department of Molecular Biology
7Howard Hughes Medical Institute University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

8Katholieke Universiteit Leuven, Faculteit Geneeskunde, Departement Moleculaire Celbiologie, LIPIT, Campus Gasthuisberg (O&N 1), 3000 Leuven, Belgium



This work has been supported by the following sources: Children's Hospital Boston Career Development Fellowship (J.K.), Austrian Science Fund (E.D.), and Fonds voor Wetenschappelijk Onderzoek—Vlaanderen and the Bijzonder Onderzoeksfonds of the K.U. Leuven.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit:

Bess Andrews | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>