Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild-mannered metabolic helper rushes to fight invading viruses

10.05.2010
Within cells, an ancient antiviral duo can deliver a one-two knockout to thwart invading viruses, report researchers who have just unmasked the cellular sidekick that throws the first punch. The findings mean scientists must rethink the design of antiviral immunity and how the body fends off viruses of all types, including influenza and HIV.

In the study, Children's Hospital Boston researchers found, mild-mannered organelles inside the cell known as peroxisomes can detect virus invasion signals and launch a limited antiviral offensive. Other organelles, the mitochondria, follow up with a more definitive antiviral counterattack.

"This is the first demonstration that peroxisomes are involved in immunity," said Jonathan Kagan, staff scientist in the gastroenterology division and senior author of the paper published May 6 in the online journal Cell. "This work has implications for our understanding of how we interact with infectious viruses and even bacteria."

The paper establishes a new function for peroxisomes as a cellular compartment that promotes a rapid response to viral infection. With this discovery, the researchers say, scientists need to look for other cellular parts that may do double duty as pathogen detectors. A larger volunteer army may be lurking in cells as needed for the innate immune system.

In a clinical implication, the findings suggest a new approach to rare and largely untreatable conditions known as peroxisome biogenesis disorders, Kagan said. In the most common manifestation, Zellweger syndrome, children suffer from major developmental abnormalities and die as infants. The milder disorders allow children to live into their teens. Many affected children die of lung infections such as pneumonia, which may arise from problems in the antiviral signaling scaffold due to the absence of peroxisomes, Kagan speculates. Previously, the disorders have been considered developmental and metabolic.

When they are not fighting invading microbes, peroxisomes are busy mopping up the potentially damaging free radical byproducts produced by their larger distant cousins, mitochondria, the power plants of the cell. In other house-keeping duties, peroxisomes also make and attach the lipids that grease the cellular machinery so proteins can slide into or through membranes. Both organelles grow, multiply, and shrink in response to metabolic demands.

Peroxisomes acquire their virus-fighting power from a cloak of mitochondrial antiviral signaling protein, or MAVS. Five years ago, MAVS proteins were discovered on mitochondria, a surprising location for which they were named, and shown to be vital to the immune system's ability to fight infections.

MAVS proteins are found in all cells in the body, Kagan said, but until now they were only known to be draped around mitochondria. The latest study started as a search for MAVS on peroxisomes, an idea born from recent reports of other proteins shared by peroxisomes and mitochondria. On a graduate studies sabbatical from Vienna, first author Evelyn Dixit stained cells for MAVS and found the proteins on peroxisomes.

Next, she observed, the same MAVS proteins activated different antiviral immune responses, depending upon the organelle they adorned. "The difference was that the antiviral response was quicker and transient when it originated from peroxisomes compared to mitochondria," Dixit said.

In another difference, the peroxisomal MAVS turned on a subset of antiviral genes without a secreting interferon. By contrast, mitochondrial MAVS triggers interferon production and release, which alerts both the cell and its neighbors to mount a larger immune response.

"Seeing interferon-stimulated genes but no interferon was at first quite aggravating," Dixit said. "We thought we did something wrong. Then we had to turn our thinking around 180 degrees and accept that it was not a mistake. Peroxisomal MAVS leads to interferon-stimulated genes while bypassing interferon secretion."

The differential response may be a way that different kinds of cells can customize their antiviral responses to the special needs of different tissues, Kagan suggests. For example, the interferon response shuts down protein synthesis, promotes inflammation, and causes a general toxic effect that some tissues may be able to handle better than others, such as the intestines.

Without interferon, peroxisomes could mount a limited response in sensitive tissues, such as nerves, eyes, or heart muscle. "We have speculated that certain tissues may only use mitochondria or only use peroxisomes," Kagan said.

"At the end of the day, we found antiviral signaling can occur from peroxisomes and from mitochondria," he said. "Only from the peroxisome do we see a rapid response, and that is sufficient to control viruses, but it cannot eliminate them. Signaling from both is needed to effectively knock them out."

CITATION: "Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity"

Evelyn Dixit,1,2 Steeve Boulant,3,4 Yijing Zhang,1 Amy S. Lee,3,4 Charlotte Odendall,1 Bennett Shum,5 Nir Hacohen,5 Zhijian J. Chen,6,7 Sean P. Whelan,3,4 Marc Fransen,8 Max L. Nibert,3,4 Giulio Superti-Furga,2 and Jonathan C. Kagan1,*

1Harvard Medical School and Division of Gastroenterology, Children's Hospital Boston, Boston, MA 02115, USA
2CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
3Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
4Training Programs in Biological and Biomedical Sciences and Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
5Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
6Department of Molecular Biology
7Howard Hughes Medical Institute University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

8Katholieke Universiteit Leuven, Faculteit Geneeskunde, Departement Moleculaire Celbiologie, LIPIT, Campus Gasthuisberg (O&N 1), 3000 Leuven, Belgium

*Correspondence: jonathan.kagan@childrens.harvard.edu

FUNDING:

This work has been supported by the following sources: Children's Hospital Boston Career Development Fellowship (J.K.), Austrian Science Fund (E.D.), and Fonds voor Wetenschappelijk Onderzoek—Vlaanderen and the Bijzonder Onderzoeksfonds of the K.U. Leuven.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Bess Andrews | EurekAlert!
Further information:
http://www.childrens.harvard.edu
http://www.childrenshospital.org/newsroom

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>