Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microscope Unlocks the Cell’s Molecular Mysteries

15.06.2011
Among science’s “final frontiers,” one of the most difficult to cross has been looking into the molecular-level workings of living cells. Now, a University of Massachusetts Amherst physicist has built an instrument to do just that and is beginning to uncover secrets such as how enzymes regulate various cell functions.

Jennifer Ross built a microscope she calls Single Molecule TIRF, for total internal reflection fluorescence, that is much brighter than commercially available instruments and has the remarkable ability to see and photograph single molecules in real time.

An image from the TIRF instrument from one of Ross and colleagues’ recent studies of the enzyme katanin was recently featured on the cover of Biophysical Journal, accompanying their article reporting that they have for the first time seen and recorded video of an enzyme cutting microtubules. This accomplishment is a key to understanding basic microtubule function and what goes wrong in diseases related to their malfunction.

As the name suggests, microtubules are strong, hollow tubes about 25 nanometers in diameter that form bundles to provide structure to a vast variety of cells from plants to humans. In plants, they direct cellulose deposition to give plants rigidity, Ross notes. In humans, nerve axons cannot function properly without long stabilized microtubule bundles to support their extended structure. Without them, nerve cells retract, causing neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) or spastic paraplegia. Microtubules are also crucial in arranging materials inside cells during the two types of 2division, mitosis and meiosis.

Katanin is an enzyme that cuts microtubules in the middle or near either end, making it an important regulator in control of these molecular structures. “Think of microtubules as a bunch of lumber you want to use to build a house, but you have no way to cut the boards into the correct lengths. You need katanin to cut it,” says Ross.

However, there’s a long-standing lack of understanding of how this enzyme actually cuts microtubules, she adds. One reason is that it’s very difficult to purify. Her postdoctoral research assistant Juan Daniel Diaz-Valencia has made “valiant” efforts to purify katanin for the series of experiments conducted at UMass Amherst in collaboration with cell biologist David Sharp of the Albert Einstein College of Medicine, Bronx, New York. When Diaz-Valencia successfully purifies katanin, “he stays up for two days to get data,” she says.

In a recent series of experiments, her group not only documented katanin’s cutting action but also discovered that the action is concentration-dependent. They also established that taking katanin away from a cell results in a microtubule buildup that chokes the cell inside like a logjam. “No one has characterized it quite as well as we have,” Ross points out. “Because studying it in bulk solution is not helpful. It’s essential to have the Single Molecule TIRF microscope to visualize exactly what’s going on.”

For these studies, the researchers worked with a preparation of purified pig brains, rich in microtubules, adding katanin labeled with a fluorescent tag to visualize the mechanics of how the katanin “snipping” complex works. Through the TIRF microscope, they take videos with a very sensitive camera that can see single light particles.

After a three-minute control period passes at the start of each experiment to make sure the microtubules are not destabilizing on their own, which provides a control for each session, the researchers add purified katanin in different concentrations. By measuring the brightness of the fluorescent tags, they can count the number of molecules present more precisely than ever before, Ross notes.

“What we’ve found is that katanin is constantly breaking down and reforming as it is being used to cut the microtubules,” she adds. “We now know that it’s constantly recycling subunits, as if you’re continually replacing wheels on your car as you’re driving along.” But while the protein is chopping the microtubules, it’s also destroying the experiment, so after 20 minutes they must start a new one.

Ross and colleagues are already moving on to next steps, building an even more powerful new microscope with more capabilities using National Science Foundation funding. They will be turning their attention next to a relatively unknown enzyme called fidgetin, named after a mouse strain with a tremor that twitches its head back and forth rather than the usual up and down. The animals, first noted in the 1940s, suffer from a mutation in fidgetin production causing this unusual tremor.

Only in the past decade have biologists begun to examine fidgetin’s function at the molecular level, Ross says. “We find that this protein is unique, it’s very different from katanin and it regulates bone formation,” she explains. “Lack of it causes birth defects.” She and colleagues are beginning work with developmental biologists including Dominique Alfandari in the UMass Amherst veterinary and animal sciences department to design further studies.

“We’re seeing such unusual things, we can’t afford to not look at it,” she adds. “I will not be surprised if, in 10 years, we identify numerous bone birth defects that are caused by the lack of this enzyme.”

Jennifer Ross | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>