Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microscope Unlocks the Cell’s Molecular Mysteries

15.06.2011
Among science’s “final frontiers,” one of the most difficult to cross has been looking into the molecular-level workings of living cells. Now, a University of Massachusetts Amherst physicist has built an instrument to do just that and is beginning to uncover secrets such as how enzymes regulate various cell functions.

Jennifer Ross built a microscope she calls Single Molecule TIRF, for total internal reflection fluorescence, that is much brighter than commercially available instruments and has the remarkable ability to see and photograph single molecules in real time.

An image from the TIRF instrument from one of Ross and colleagues’ recent studies of the enzyme katanin was recently featured on the cover of Biophysical Journal, accompanying their article reporting that they have for the first time seen and recorded video of an enzyme cutting microtubules. This accomplishment is a key to understanding basic microtubule function and what goes wrong in diseases related to their malfunction.

As the name suggests, microtubules are strong, hollow tubes about 25 nanometers in diameter that form bundles to provide structure to a vast variety of cells from plants to humans. In plants, they direct cellulose deposition to give plants rigidity, Ross notes. In humans, nerve axons cannot function properly without long stabilized microtubule bundles to support their extended structure. Without them, nerve cells retract, causing neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) or spastic paraplegia. Microtubules are also crucial in arranging materials inside cells during the two types of 2division, mitosis and meiosis.

Katanin is an enzyme that cuts microtubules in the middle or near either end, making it an important regulator in control of these molecular structures. “Think of microtubules as a bunch of lumber you want to use to build a house, but you have no way to cut the boards into the correct lengths. You need katanin to cut it,” says Ross.

However, there’s a long-standing lack of understanding of how this enzyme actually cuts microtubules, she adds. One reason is that it’s very difficult to purify. Her postdoctoral research assistant Juan Daniel Diaz-Valencia has made “valiant” efforts to purify katanin for the series of experiments conducted at UMass Amherst in collaboration with cell biologist David Sharp of the Albert Einstein College of Medicine, Bronx, New York. When Diaz-Valencia successfully purifies katanin, “he stays up for two days to get data,” she says.

In a recent series of experiments, her group not only documented katanin’s cutting action but also discovered that the action is concentration-dependent. They also established that taking katanin away from a cell results in a microtubule buildup that chokes the cell inside like a logjam. “No one has characterized it quite as well as we have,” Ross points out. “Because studying it in bulk solution is not helpful. It’s essential to have the Single Molecule TIRF microscope to visualize exactly what’s going on.”

For these studies, the researchers worked with a preparation of purified pig brains, rich in microtubules, adding katanin labeled with a fluorescent tag to visualize the mechanics of how the katanin “snipping” complex works. Through the TIRF microscope, they take videos with a very sensitive camera that can see single light particles.

After a three-minute control period passes at the start of each experiment to make sure the microtubules are not destabilizing on their own, which provides a control for each session, the researchers add purified katanin in different concentrations. By measuring the brightness of the fluorescent tags, they can count the number of molecules present more precisely than ever before, Ross notes.

“What we’ve found is that katanin is constantly breaking down and reforming as it is being used to cut the microtubules,” she adds. “We now know that it’s constantly recycling subunits, as if you’re continually replacing wheels on your car as you’re driving along.” But while the protein is chopping the microtubules, it’s also destroying the experiment, so after 20 minutes they must start a new one.

Ross and colleagues are already moving on to next steps, building an even more powerful new microscope with more capabilities using National Science Foundation funding. They will be turning their attention next to a relatively unknown enzyme called fidgetin, named after a mouse strain with a tremor that twitches its head back and forth rather than the usual up and down. The animals, first noted in the 1940s, suffer from a mutation in fidgetin production causing this unusual tremor.

Only in the past decade have biologists begun to examine fidgetin’s function at the molecular level, Ross says. “We find that this protein is unique, it’s very different from katanin and it regulates bone formation,” she explains. “Lack of it causes birth defects.” She and colleagues are beginning work with developmental biologists including Dominique Alfandari in the UMass Amherst veterinary and animal sciences department to design further studies.

“We’re seeing such unusual things, we can’t afford to not look at it,” she adds. “I will not be surprised if, in 10 years, we identify numerous bone birth defects that are caused by the lack of this enzyme.”

Jennifer Ross | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>