Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscope Reveals How Bacteria "Breathe" Toxic Metals

18.03.2009
Researchers are studying some common soil bacteria that “inhale” toxic metals and “exhale” them in a non-toxic form.

The bacteria might one day be used to clean up toxic chemicals left over from nuclear weapons production decades ago.

Using a unique combination of microscopes, researchers at Ohio State University and their colleagues were able to glimpse how the Shewanella oneidensis bacterium breaks down metal to chemically extract oxygen.

The study, published online this week in the journal Applied and Environmental Microbiology, provides the first evidence that Shewanella maneuvers proteins within the bacterial cell into its outer membrane to contact metal directly. The proteins then bond with metal oxides, which the bacteria utilize the same way we do oxygen.

The process is called respiration, and it’s how living organisms make energy, explained Brian Lower, assistant professor in the School of Environment and Natural Resources at Ohio State. We use the oxygen we breathe to release energy from our food. But in nature, bacteria don’t always have access to oxygen.

“Whether the bacteria are buried in the soil or underwater, they can rely on metals to get the energy they need,” Lower said. “It’s an ancient form of respiration.”

“This kind of respiration is fascinating from an evolutionary standpoint, but we’re also interested in how we can use the bacteria to remediate nasty compounds such as uranium, technetium, and chromium.”

The last two are byproducts of plutonium. The United States Department of Energy is sponsoring the work in order to uncover new methods for treating waste from nuclear weapons production in the 1960s and ‘70s.

Shewanella is naturally present in the soil, and can in fact be found at nuclear waste sites such as the Hanford site in the state of Washington, Lower explained.

With better knowledge of the bacterium’s abilities, scientists might one day engineer a Shewanella that would remediate such waste more efficiently.

“For instance, if you could enhance this bacterium’s ability to reduce uranium by having it make more of these key proteins, that could perhaps be one way to clean up these sites that are contaminated,” he said.

The danger at such waste sites is that the toxic metals are soluble, and so can leak into the local water supply. But these bacteria naturally convert the metals into an insoluble form. Though the metals would remain in place, they would be stable solids instead of unstable liquids.

For this study, Lower and his colleagues used an atomic force microscope (AFM) to test how the bacterium responded to the metallic mineral hematite.

An AFM works somewhat like a miniaturized phonograph needle: a tiny tip dangles from a cantilever above a surface that’s being studied. The cantilever measures how much the tip rises and falls as it’s dragged over the surface. It can measure features smaller than a nanometer (billionth of a meter), and detect atomic forces between the probe tip and the surface material.

They combined the AFM with an optical microscope to get a precise map of the bacteria’s location on the hematite.

Though the bacteria are very small -- several hundred thousand of them could fit inside the period at the end of a sentence -- they are still thousands of times bigger than the tip of an AFM probe. So the microscope was able to slide over the surface of individual bacteria to detect protein molecules on the cell surface and in contact with the metal.

The researchers coated their probe tip with antibodies for the protein OmcA, which they suspected Shewanella would use to “breathe” the metal.

Whenever the probe slid over an OmcA protein, the antibody coating would stick to the protein. By measuring the tiny increase in force needed to pull the two apart, the researchers could tell where on the bacteria surface the proteins were located.

The microscope detected OmcA all around the edges of the bacteria, wherever the cell membrane contacted the hematite -- which suggests that the protein does indeed enable the bacteria to “breathe” hematite. The protein was even present in a gelatinous ooze that was seeping from the bacteria. This suggests that Shewanella might create the ooze in order to obtain energy from a wider portion of the metal than it can directly touch, Lower said.

In the future, he and his partners want to test their new microscope technique on other types of cells. They also want to test whether Shewanella produces OmcA on the cell surface when exposed to uranium and technetium.

Lower’s coauthors on the paper hail from Corning, Inc.; Pacific Northwest National Laboratory; Johannes Kepler University of Linz, Austria; Ecole Polytechnique Fédérale de Lausanne, Switzerland; and Umeå University, Sweden.

Contact: Brian Lower, (614) 247-1676; Lower.30@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>