Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs grease the cell's circadian clockwork

02.06.2009
Most of our cells possess an internal clock, a group of genes displaying a cyclic expression pattern that reaches a peak once a day.

A large number of circadian genes are expressed by organs such as the liver, whose activity needs to be precisely regulated over the course of the day. A team of researchers of the National Centre of Competence in Research Frontiers in Genetics, based at the University of Geneva, Switzerland, reveals that an important regulator of this molecular oscillator is a specific microRNA.

The latter belongs to a class of small RNA molecules that regulate the production of proteins in our cells. Thus far, little was known about their function within the circadian clockwork. The study by Ueli Schibler's team, published in the 1st June edition of Genes & Development, fills in this important gap.

Living beings have adapted to the alternation between night and day by developing an internal clock, located in the brain. It allows synchronising gene expression and physiological functions with geophysical time. In addition, most of our body's cells possess their own subsidiary oscillators, a group of genes displaying a cyclic expression pattern that reaches a peak every twenty-four hours.

More than 350 genes involved in metabolism, including that of cholesterol and lipids, are expressed in liver cells in a cyclic fashion. Many of them are also influenced by rhythmic food intake. Their activity must therefore be fine-tuned and synchronised with precision to ensure cohesion between diverse metabolic processes.

MicroRNAs induce gene silencing

Ueli Schibler, from the Molecular Biology Department of the University of Geneva, focuses on the mechanisms controlling the tiny oscillators in liver cells. MicroRNAs were among the potential factors likely to be involved in clock gene regulation. The common property of these small molecules lies in their ability to inhibit the synthesis of specific proteins, thus allowing cells to reduce the activity of certain genes at a given time.

"We have studied the role of a microRNA called miR-122, which is highly abundant in liver. It has caught considerable attention for its role in regulating cholesterol and lipid metabolism and in aiding the replication of hepatitis C virus" explains David Gatfield, one of Professor Schibler's collaborators.

Performance of the molecular oscillator…

The researchers' team has discovered that miR-122 is tightly embedded in the output system of the circadian clock in hepatocytes. This microRNA regulates numerous circadian genes, impinging on the amplitude and duration of their expression. Conversely, the synthesis of miR-122 involves a transcription factor that is otherwise known for its function in the circadian clock.

…and viral replication

"It will be exciting to investigate whether the connection between circadian rhythms and miR-122 also extends to this microRNA's role in hepatitis C virus replication", points out David Gatfield. Knowing whether viral multiplication is gated to specific times of the day would contribute significantly to our understanding of the life cycle of this formidable pathogen.

Scientists have uncovered over the past years the role of microRNAs in crucial physiological functions such as growth and programmed cell death, as well as carcinogenesis. Ueli Schibler's team adds a stone to this edifice by placing miR-122 within the clock gene machinery.

Heather Cosel-Pieper | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>