Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs circulating in blood show promise as biomarkers to detect pancreatic cancer

08.09.2009
A blood test for small molecules abnormally expressed in pancreatic cancer may be a promising route to early detection of the disease, researchers at The University of Texas M. D. Anderson Cancer Center report in the September edition of the journal Cancer Prevention Research.

The team's analysis of four microRNAs (miRNA) found in the blood plasma of pancreatic cancer patients is proof of principle to further develop a blood test for this evasive disease, said senior author Subrata Sen, Ph.D., associate professor in M. D. Anderson's Department of Molecular Pathology.

"Increased expression of microRNAs is known to be involved with specific genetic pathways and processes responsible for the development of cancer-associated changes in cells," Sen said. "Detection of elevated levels of miRNAs in blood plasma of pancreatic cancer patients as informative biomarkers of disease appears to be a promising, novel approach for developing a minimally invasive assay for detecting this disease."

There is no accurate, noninvasive way to detect pancreatic cancer, the fourth-leading cause of cancer-related deaths in the United States. Fewer than 5 percent of patients survive to five years.

MicroRNAs are single-stranded bits of RNA consisting of 18 to 24 nucleotides that regulate the messenger RNA (mRNA) expressed by genes to tell a cell's protein-making machinery what protein to make.

The four targeted microRNAs previously had been associated in varied ways with pancreatic cancer or with precancerous lesions. Expression of the four was analyzed in 28 patients with pancreatic cancer and 19 healthy people.

The four combined markers accurately identified 64 percent (sensitivity) of the pancreatic cancer cases and correctly identified 89 percent of those without disease (specificity). That degree of sensitivity and specificity are good for a pilot study but don't yet rise to the levels required for translation in the clinic, which would require investigating more circulating microRNAs in blood in a larger sample of persons representing different stages of the disease and healthy controls.

The study's small sample size, which compared only the extremes of pancreatic cancer or the complete absence of the disease, is a limitation, but the results justify continued development of this strategy, Sen said.

One of the miRNAs in the study is overexpressed in precursor lesions that can lead to full pancreatic cancer. "The fact that a microRNA reported to be overexpressed in pre-invasive pancreatic cancer could be detected in blood plasma from pancreatic cancer patients raises the possibility that a blood test for detecting pre-invasive pancreatic cancer may become a reality," Sen said.

Marker miRNAs used in the study were miR-21, miR-210, miR-155 and miR-196a.

Sen and colleagues are working with the Early Detection Research Network of the National Cancer Institute to develop studies with larger sample sizes that are designed to test miRNA markers associated with different grades and stages of the disease.

The project was funded by grants from the National Cancer Institute.

Co-authors with Sen are first author Jin Wang, Ph.D., and Aimee LeBlanc, BS, also of Molecular Pathology; Jinyun Chen, Ph.D. and Marsha Frazier, Ph.D., of M. D. Anderson's Department of Epidemiology; Ping Chang, Donghui Li, Ph.D., and James Abbruzzese, M.D., all of the Department of Gastrointestinal Medical Oncology; and Ann Killary, Ph.D., of the Department of Genetics.

About MD Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>