Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA: a glimpse into the past

01.02.2010
Small molecules give EMBL scientists bigger picture of animal evolution

The last ancestor we shared with worms, which roamed the seas around 600 million years ago, may already have had a sophisticated brain that released hormones into the blood and was connected to various sensory organs.

The evidence comes not from a newly found fossil but from the study of microRNAs – small RNA molecules that regulate gene expression – in animals alive today. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered that these molecules are found in the exact same tissues in animals as diverse as sea anemones, worms, and humans, hinting at an early origin of these tissues in animal evolution.

Their findings, published today in Nature, also open new avenues for studying the current functions of specific microRNAs.

Animals from different branches of the evolutionary tree – different lineages – possess specific microRNAs that evolved only in their lineage. But they also have microRNAs in common: ones which they inherited from their last common ancestor, and which have been conserved throughout animal evolution.

The EMBL scientists looked at the marine annelid Platynereis dumerilii, which is thought to have changed little over the past 600 million years. They visualised where these conserved microRNAs are expressed, and compared Platynereis with other animals. They found that in Platynereis these microRNAs are highly specific for certain tissues and cell types and, what is more, discovered that tissue specificity was conserved over hundreds of millions of years of evolutionary time.

The scientists reasoned that if an ancient microRNA is found in a specific part of the brain in one species and in a very similar location in another species, then this brain part probably already existed in the last common ancestor of those species. Thus, they were able to glean a glimpse of the past, an idea of some of the traits of the last common ancestor of worms and humans.

“By looking at where in the body different microRNAs evolved, we can build a picture of ancestors for which we have no fossils, and uncover traits that fossils simply cannot show us,” says Detlev Arendt, who headed the study: “But uncovering where these ancient microRNAs are expressed in animals from different branches of the evolutionary tree has so far been very challenging.”

“We found that annelids such as Platynereis and vertebrates such as ourselves share some microRNAs that are specific to the parts of the central nervous system that secrete hormones into the blood, and others that are restricted to other parts of the central or peripheral nervous systems, or to gut or musculature”, explains Foteini Christodoulou, who carried out most of the experimental work. “This means that our last common ancestor already had all these structures.”

Knowing where microRNAs were expressed in our ancestors could also help scientists understand the role of specific microRNA molecules today, as it gives them a clue of where to look.

“If a certain microRNA is known to have evolved in the gut, for instance, it is likely to still carry out a function there”, explains EMBL scientist Peer Bork, who also contributed to the study.

Next, Arendt and colleagues would like to investigate the exact function of each of these conserved microRNAs – what genes they regulated, and what processes those genes were involved in – in an attempt to determine what their role might have been in the ancient past.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>