Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbial world’s use of metals mostly unmapped

New method could lead to innovative clean energy and bioremediation technologies, and help explain how microbes shape Earth’s climate

A new way of surveying microbes for the metals they contain reveals that biologists have been relying on the equivalent of a 15th century map of the world.

It turns out that there are many more metal-containing proteins in microbes than previously recognized.

This means the microbial world boasts a broader and more diverse array of metal-driven chemical processes than scientists have imagined. In fact, most have yet to be discovered, according to a first-of-its-kind survey of the metals in three microbes conducted by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory in collaboration with scientists at the University of Georgia.

Their research will help chart a more complete understanding of the far-reaching roles of microbial metals in biology and the Earth’s climate. It could also lead to new ways to harness metal-driven chemical processes to create next-generation biofuels or to clean up environmental contaminants.

Microbes assimilate metals from their environment and incorporate them into proteins in order to power life’s most important chemical processes, such as photosynthesis, respiration, and DNA repair. Metal-containing proteins in microbes also helped oxygenate the planet’s atmosphere billions of years ago, enabling life as we know it, and they continue to play a critical role in the Earth’s carbon cycle.

But the diversity and extent of microbial metals had eluded scientists until now.

“This is a huge surprise. It reveals how naive we are about the wide range of chemistries that microbes do,” says John Tainer of Berkeley Lab’s Life Sciences Division and the Scripps Research Institute in La Jolla, CA. Tainer conducted the research with Michael Adams of the University of Georgia and a team of scientists that includes Steven Yannone and Gary Siuzdak of Berkeley Lab’s Life Sciences Division.

The scientists report their research July 18 in an advance online publication of the journal Nature.

Using state-of-the-art techniques, the team catalogued the metals in three microbes: one that lives in human intestines, one plucked from a hotspring in Yellowstone National Park, and one that thrives in the near-boiling waters of undersea thermal vents.

They uncovered a microbial world far richer in metals than ever expected. For example, in the undersea thermal-vent loving microbe, or Pyrococcus furiosus, they found metals such as lead, manganese, and molybdenum that P. furiosus wasn’t known to use.

The scientists traced these newfound metals to the proteins that contain them, called metalloproteins. They discovered four new metalloproteins in the microbe, which increased the number of known metalloproteins in P. furiosus by almost a quarter. Their discovery also increased the number of nickel-containing enzymes in all of biology from eight to ten.

A similar survey of the other two microbes unearthed additional unexpected metals and new metalloproteins. Based on this sizeable haul from only three microbes, the team believes that metalloproteins are much more extensive and diverse in the microbial world than scientists realized.

“We thought we knew most of the metalloproteins out there,” says Tainer. “But it turns out we only know a tiny fraction of them. We now have to look at microbial genomes with a fresh eye.”

The team used a first-of-its-kind combination of two techniques to envisage this uncharted microbial landscape. Biochemical fractionation enabled them to take apart a microbe while keeping its proteins intact and stable, ready to be analyzed in their natural state. Next, a technology called inductively coupled plasma mass spectrometry allowed them to identify extremely low quantities of individual metals in these proteins.

Together, these tools provide a quick tally of the metalloproteins in a microbe.

The current way to discover metalloproteins is much slower. Simply stated, it involves genetically sequencing a microbe, identifying the proteins encoded by its genes, and structurally characterizing each protein.

“Standard methods of identifying metalloproteins can take years,” says Yannone. “By directly surveying all microbial proteins for metals we can rapidly identify the majority of metalloproteins within any cell.”

In addition to gaining a better understanding of the biochemical diversity of microbes, the team’s new metal-hunting technique could expedite the search for new biochemical capabilities in microbial life that can be harnessed for clean energy development, carbon sequestration, and other applications.

“If you want to degrade cellulose to make biofuel, and you know the enzymes involved require a specific metal-driven chemistry, then you can use this technique to find those enzymes in microbes,” says Yannone.

Adds Tainer, “Knowing that all of these metal-containing proteins are out there, waiting to be found, is kind of like being in a candy store. We might discover new proteins that we can put to use.”

The research was funded by the Department of Energy Office of Science.

Berkeley Lab scientists provided the inductively coupled plasma mass spectrometry equipment. They contributed to the experimental design and data analysis in collaboration with University of Georgia scientists.

Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Visit our website.

Additional information:
The paper describing this work, titled, “Microbial metalloproteomes are largely uncharacterized” appears in the July 18, 2010 advance online publication of the journal Nature.

This research is part of the MAGGIE (Molecular Assemblies, Genes and Genomes Integrated Efficiently) project supported by Department of Energy.

Dan Krotz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>