Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes team up to boost plants' stress tolerance

18.02.2013
While most farmers consider viruses and fungi potential threats to their crops, these microbes can help wild plants adapt to extreme conditions, according to a Penn State virologist.

Discovering how microbes collaborate to improve the hardiness of plants is a key to sustainable agriculture that can help meet increasing food demands, in addition to avoiding possible conflicts over scare resources, said Marilyn Roossinck, professor of plant pathology and environmental microbiology, and biology.

"It's a security issue," Roossinck said. "The amount of arable land is shrinking as cities are growing, and climate change is also affecting our ability to grow enough food and food shortages can lead to unrest and wars."

Population growth makes this research important as well, Roossinck added.

"The global population is heading toward 9 billion and incidents of drought like we had recently are all concerns," said Roossinck. "We need to start taking this seriously."

Roossinck, who reports on the findings today (Feb. 17) at the annual meeting of the American Association for the Advancement of Science in Boston, said that she and her colleagues found an example of a collaboration between plants and viruses that confer drought tolerance to many different crop plants.

The researchers tested four different viruses and several different plants, including crops such as rice, tomato, squash and beets, and showed that the viruses increased the plants' ability to tolerate drought. Virus infection also provided cold tolerance in some cases.

A leafy plant, related to a common weed known as lamb's quarter, was also infected with a virus that caused a local infection. The infection was enough to boost the plant's drought tolerance and may mean that the virus does not have to actively replicate in the cells where the resistance to drought occurs, according to Roossinck.

In studies on plants that thrive in the volcanic soils of Costa Rica and in the hot, geothermal ground in Yellowstone National Park, viruses and fungi work together with plants to confer temperature hardiness, said Roossinck. Researchers found that fungi and a type of grass -- tropical panic grass -- found in Yellowstone National Park grow together in temperatures above 125 degrees Fahrenheit. If the plant and fungus are separated, however, both die in the same heat levels.

Because viruses are often present in plant fungi, Roossinck wondered if viruses played a role in the reaction.

"I noticed that all of the samples from the geothermal soils had a virus, so it seemed worth it to take a deeper look," said Roossinck.

The researchers found that there was no heat tolerance without the virus. Once the researchers cured the fungus of the virus, the plant was unable to withstand the heat. When the virus was reintroduced, the plant regained heat tolerance.

"A virus is absolutely required for thermal tolerance," said Roossinck. "If you cure the fungus of the virus, you no longer have the thermal tolerance."

While researchers do not entirely understand the role of viruses in helping plants withstand extreme conditions, Roossinck said that future research may help the agricultural industry naturally develop hardier plants, rather than rely on chemical solutions that threaten the environment.

"The question is, can we restore the natural level of microbes in plants and grow them better and more tolerant of environmental stress like heat and drought, or pathogens?" Roossinck said. "This may lead to more natural methods of creating crops that are more heat, drought and stress tolerant."

Matthew Swayne | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>