Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes generate electricity while cleaning up nuclear waste

07.09.2011
Researchers at Michigan State University have unraveled the mystery of how microbes generate electricity while cleaning up nuclear waste and other toxic metals.

Details of the process, which can be improved and patented, are published in the current issue of the Proceedings of the National Academy of Sciences. The implications could eventually benefit sites forever changed by nuclear contamination, said Gemma Reguera, MSU microbiologist.

"Geobacter bacteria are tiny micro-organisms that can play a major role in cleaning up polluted sites around the world," said Reguera, who is an MSU AgBioResearch scientist. "Uranium contamination can be produced at any step in the production of nuclear fuel, and this process safely prevents its mobility and the hazard for exposure."

The ability of Geobacter to immobilize uranium has been well documented. However, identifying the Geobacters' conductive pili or nanowires as doing the yeoman's share of the work is a new revelation. Nanowires, hair-like appendages found on the outside of Geobacters, are the managers of electrical activity during a cleanup.

"Our findings clearly identify nanowires as being the primary catalyst for uranium reduction," Reguera said. "They are essentially performing nature's version of electroplating with uranium, effectively immobilizing the radioactive material and preventing it from leaching into groundwater."

The nanowires also shield Geobacter and allow the bacteria to thrive in a toxic environment, she added.

Their effectiveness was proven during a cleanup in a uranium mill tailings site in Rifle, Colo. Researchers injected acetate into contaminated groundwater. Since this is Geobacters' preferred food, it stimulated the growth of the Geobacter community already in the soil, which in turn, worked to remove the uranium, Reguera said.

Reguera and her team of researchers were able to genetically engineer a Geobacter strain with enhanced nanowire production. The modified version improved the efficiency of the bacteria's ability to immobilize uranium proportionally to the number of nanowires while subsequently improving its viability as a catalytic cell.

Reguera has filed patents to build on her research, which could lead to the development of microbial fuel cells capable of generating electricity while cleaning up after environmental disasters.

The research team included Dena Cologgi and Allison Speers, MSU graduate students, and Sanela Lampa-Pastirk and Shelly Kelly, post-doctoral researchers. The National Institute of Environmental Health Science and the U.S. Department of Energy funded the study.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>