Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes capture, store, and release nitrogen to feed reef-building coral

14.05.2013
Microscopic algae that live within reef-forming corals scoop up available nitrogen, store the excess in crystal form, and slowly feed it to the coral as needed, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.

Scientists have known for years that these symbiotic microorganisms serve up nitrogen to their coral hosts, but this new study sheds light on the dynamics of the process and reveals that the algae have the ability to store excess nitrogen, a capability that could help corals cope in their chronically low-nitrogen environment.

"It was a great surprise to find the nitrogen-rich crystals inside the algae," says corresponding author Anders Meibom of the École Polytechnique Fédérale de Lausanne, Switzerland. "It all makes perfect sense now. The algae suck up the ammonium and nitrate like a sponge when the concentration of these molecules increases, then store this nitrogen as uric acid crystals for later use."

Like all reef-forming corals, the species they studied, Pocillopora damicornis, is actually a symbiosis of two different organisms: the coral provides protection to a species of photosynthetic algae called dinoflagellates, which, in turn, provide sugars and nitrogen to the coral host. The symbiosis allows the coral to thrive in clear, tropical waters that are naturally nutrient-poor. In many places, however, coral reefs are suffering from an excess of nutrients - pollution from sewage and fertilizers that impacts the symbiotic relationship and the health of coral in unknown ways.

To better understand these exchanges of materials and to determine how an excess of nutrients might affect the balance, the researchers exposed pieces of coral to varying concentrations of isotopically-labeled nitrogen-rich compounds. Using the facilities at the Aquarium Tropicale Porte Dorée in Paris, France, the scientists applied a relatively new analytic technique called nano-scale secondary ion mass-spectrometry (NanoSIMS) to follow the path of the nitrogen. NanoSIMS enabled them to visualize and quantify the uptake, movement, and accumulation of this labeled nitrogen within the coral.

When supplied with nitrogen in the form of ammonium, nitrate or aspartic acid the dinoflagellates responded by rapidly storing the nitrogen as crystals of uric acid within its cells. But the dinoflagellates don't hang onto the nitrogen for long. Starting at about six hours after exposure, the microbes begin translocating nitrogen-rich compounds to the coral host, where the nitrogen is used in specific cellular compartments all over the surface layers of the coral.

This storage and release process helps explain how these corals get through the ups and downs of nitrogen concentrations, says Meibom. "This gives the coral-algae symbiosis a very efficient way to deal with strong fluctuations in nitrogen availability," writes Meibom. "When the nitrogen availability suddenly becomes high, the algae can take-up large amounts of nitrogen on a timescale of a few hours, store it into crystals inside the algae cells and then release this stored nitrogen for metabolic processes and growth when the nitrogen levels become normal again."

To follow up on this work, Meibom says he and his colleagues are now studying how carbon-based nutrients are taken up and distributed in the same coral-algae symbiosis.

This research was supported by an Advanced Grant from the European Research Council (BIOCARB) and by the Swiss National Science Foundation.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Meibom NanoSIMS coral reef metabolic process microbes microbiology uric acid

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>