Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men: UNC-led team solves mouse genome dilemma

30.05.2011
Data will help scientists worldwide design better experiments

Laboratory research has always been limited in terms of what conclusions scientists can safely extrapolate from animal experiments to the human population as a whole. Many promising findings in mice have not held up under further experimentation, in part because laboratory animals, bred from a limited genetic foundation, don't provide a good representation of how genetic diversity manifests in the broader human population.

Now, thanks to an in-depth analysis by a team led by Fernando Pardo-Manuel de Villena, PhD, in the UNC Department of Genetics and Gary Churchill, PhD, at The Jackson Laboratory in Bar Harbor, Maine, researchers will be able to use an online resource dubbed the Mouse Phylogeny Viewer to select from among 162 strains of laboratory mice for which the entire genome has been characterized. Phylogeny refers to the connections among all groups of organisms as understood by ancestor/descendant relationships. Pardo-Manuel de Villena is also a member of UNC Lineberger Comprehensive Cancer Center and the Carolina Center for Genome Sciences.

The results of the analysis that make this tool possible were published online today in the journal Nature Genetics.

"The viewer provides scientists with a visual tool where they can actually go and look at the genome of the mouse strains they are using or considering, compare the differences and similarities between strains and select the ones most likely to provide the basis for experimental results that can be more effectively extrapolated to the diverse human population," said Pardo-Manuel de Villena.

"As scientists use this resource to find ways to prevent and treat the genetic changes that cause cancer, heart disease, and a host of other ailments, the diversity of our lab experiments should be much easier to translate to humans," he noted.

He explains that the DNA of a given pair of typical laboratory mouse strains varies in only half of their genome and captures less than 20 percent of the diversity of the entire mouse genome. Historically, biomedical researchers have relied on what are called classical inbred strains of mice in laboratory research. With the advance of genetic science, researchers began to use wild-derived laboratory strains (descendants of captured wild mice that originate from a small number of original ancestors) to try to overcome issues associated with limited genetic diversity. However, scientists' understanding of genetic diversity in mice has – until now – been limited and biased toward the most frequently used strains.

The team compared the genome of a large and diverse sample including 36 strains of wild-caught mice, 62 wild-derived laboratory strains and 100 classical strains obtained from different stocks and different laboratories using the Mouse Diversity array – a technology that maps the entire mouse genome.

Their analysis exponentially increases the data available to geneticists who work with mice, allowing them to statistically impute the whole mouse genome sequence with very high accuracy for hundreds of laboratory mouse strains – leading to much greater precision in the interpretation of existing biomedical data and optimal selection of strains in future experiments.

The Mouse Phylogeny Viewer is available at http://msub.csbio.unc.edu/.

Other team members include Leonard McMillan, PhD, two graduate students Jeremy Wang and Catherine Welsh from the UNC-Chapel Hill Department of Computer Science; Timothy Bell, Ryan Buus and graduate student John Didion all from the UNC-Chapel Hill Department of Genetics, UNC Lineberger and the Carolina Center for Genome Sciences; Hyuna Yang, PhD, from The Jackson Laboratory; Francois Bonhomme, PhD, and Pierre Boursot, PhD, from the Universite Montpellier (France); Alex Yu, PhD, from the National Taiwan University; Michael Nachman, PhD , from the University of Arizona; Jaroslav Pialek, PhD, from the Academy of Sciences of the Czech Republic, and Priscilla Tucker, PhD, from the University of Michigan.

The research was supported by the National Institute of General Medical Sciences (part of the National Institutes of Health), and several additional National Institutes of Health grants, a Czech Science Foundation grant and a University of North Carolina Bioinformatics and Computational Biology training grant.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Genetics Genom Genome Sciences Mouse Phylogeny Science TV genetic diversity health services

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>