Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men: UNC-led team solves mouse genome dilemma

30.05.2011
Data will help scientists worldwide design better experiments

Laboratory research has always been limited in terms of what conclusions scientists can safely extrapolate from animal experiments to the human population as a whole. Many promising findings in mice have not held up under further experimentation, in part because laboratory animals, bred from a limited genetic foundation, don't provide a good representation of how genetic diversity manifests in the broader human population.

Now, thanks to an in-depth analysis by a team led by Fernando Pardo-Manuel de Villena, PhD, in the UNC Department of Genetics and Gary Churchill, PhD, at The Jackson Laboratory in Bar Harbor, Maine, researchers will be able to use an online resource dubbed the Mouse Phylogeny Viewer to select from among 162 strains of laboratory mice for which the entire genome has been characterized. Phylogeny refers to the connections among all groups of organisms as understood by ancestor/descendant relationships. Pardo-Manuel de Villena is also a member of UNC Lineberger Comprehensive Cancer Center and the Carolina Center for Genome Sciences.

The results of the analysis that make this tool possible were published online today in the journal Nature Genetics.

"The viewer provides scientists with a visual tool where they can actually go and look at the genome of the mouse strains they are using or considering, compare the differences and similarities between strains and select the ones most likely to provide the basis for experimental results that can be more effectively extrapolated to the diverse human population," said Pardo-Manuel de Villena.

"As scientists use this resource to find ways to prevent and treat the genetic changes that cause cancer, heart disease, and a host of other ailments, the diversity of our lab experiments should be much easier to translate to humans," he noted.

He explains that the DNA of a given pair of typical laboratory mouse strains varies in only half of their genome and captures less than 20 percent of the diversity of the entire mouse genome. Historically, biomedical researchers have relied on what are called classical inbred strains of mice in laboratory research. With the advance of genetic science, researchers began to use wild-derived laboratory strains (descendants of captured wild mice that originate from a small number of original ancestors) to try to overcome issues associated with limited genetic diversity. However, scientists' understanding of genetic diversity in mice has – until now – been limited and biased toward the most frequently used strains.

The team compared the genome of a large and diverse sample including 36 strains of wild-caught mice, 62 wild-derived laboratory strains and 100 classical strains obtained from different stocks and different laboratories using the Mouse Diversity array – a technology that maps the entire mouse genome.

Their analysis exponentially increases the data available to geneticists who work with mice, allowing them to statistically impute the whole mouse genome sequence with very high accuracy for hundreds of laboratory mouse strains – leading to much greater precision in the interpretation of existing biomedical data and optimal selection of strains in future experiments.

The Mouse Phylogeny Viewer is available at http://msub.csbio.unc.edu/.

Other team members include Leonard McMillan, PhD, two graduate students Jeremy Wang and Catherine Welsh from the UNC-Chapel Hill Department of Computer Science; Timothy Bell, Ryan Buus and graduate student John Didion all from the UNC-Chapel Hill Department of Genetics, UNC Lineberger and the Carolina Center for Genome Sciences; Hyuna Yang, PhD, from The Jackson Laboratory; Francois Bonhomme, PhD, and Pierre Boursot, PhD, from the Universite Montpellier (France); Alex Yu, PhD, from the National Taiwan University; Michael Nachman, PhD , from the University of Arizona; Jaroslav Pialek, PhD, from the Academy of Sciences of the Czech Republic, and Priscilla Tucker, PhD, from the University of Michigan.

The research was supported by the National Institute of General Medical Sciences (part of the National Institutes of Health), and several additional National Institutes of Health grants, a Czech Science Foundation grant and a University of North Carolina Bioinformatics and Computational Biology training grant.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Genetics Genom Genome Sciences Mouse Phylogeny Science TV genetic diversity health services

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>