New method of unreeling cocoons could extend silk industry beyond Asia

Fritz Vollrath, Tom Gheysens and colleagues explain that silk is made by unraveling— or unreeling — the fine, soft thread from cocoons of silkmoths. The practice began as far back as 3500 BC in ancient China, where silk was the fabric of royalty.

Today, most silk comes from cocoons of the domesticated Mulberry silkworm (bred from a species native to Asia) because they are easy to unreel into long continuous strands. The cocoons formed by “wild” species are too tough for this process, so harsher methods are sometimes used. However, these methods damage the strands, producing a poor-quality silk. To overcome this challenge to the widespread commercial use of wild cocoons, the researchers developed a new way to loosen the strands without damaging them.

The group found that the surfaces of wild cocoons were coated with a mineral layer and that removing this layer (“demineralizing”) made it easy to unreel the cocoons into long continuous strands with commercial reeling equipment. These strands were just as long and strong as those from Mulberry silkworm cocoons. The researchers say that the new method could expand the silk industry to new areas of the world where wild silkworms thrive.

The authors acknowledge funding from the Air Force Office of Scientific Research, the European Union, the Biotechnology and Biological Sciences Research Council and Engineering and Physical Sciences Research Council.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors