Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method takes snapshots of proteins as they fold

11.01.2011
Scientists have invented a way to ‘watch’ proteins fold — in less than thousandths of a second -- into the elaborate twisted shapes that determine their function.

People have only 20,000 to 30,000 genes (the number is hotly contested), but they use those genes to make more than 2 million proteins. It’s the protein molecules that domost of the work in the human cell. After all, the word protein comes from the Greek prota, meaning “of primary importance.”

Proteins are created as chains of amino acids, and these chains of usually fold spontaneously into what is called their “native form” in milliseconds or a few seconds.

A protein’s function depends sensitively on its shape. For example, enzymes and the molecules they alter are often described as fitting together like a lock and key. By the same token, misfolded proteins are behind some of the most dreaded neurodegenerative diseases, such as Alzheimer’s, Parkinson's and mad cow disease.

Scientists can't match the speed with which proteins fold. Predicting how chains of amino acids will fold from scratch requires either powerful supercomputers or cloud sourcing (harnessing the pattern recognition power of thousands of people by means of games such as Folding@home).

Either way, prediction is time-consuming and often inaccurate, so much so that the protein-structure bottleneck is slowing the exploitation of DNA sequence data in medicine and biotechnology.

A clever way of watching proteins fold and unfold may finally provide the kind of detail needed to improve protein structure predictions.

In a recent issue of the online version of the Journal of the American Chemical Society three scientists, led by Michael L. Gross, PhD, professor of chemistry in Arts & Sciences and of medicine and immunology in the School of Medicine at Washington University in St. Louis, describe a proof-of-principle study in which they use the new approach to watch the folding of a small protein called barstar.

What they do is roughly analogous to filming flying bullets or bursting balloons with a stroboscope and a fast camera. The "stills" taken by the camera slow motion to the point that normally imperceptible events are laid open to scrutiny.

The scientists are using a version of this old trick to “watch” proteins fold. The “strobe light” is a temperature jump and the “camera” is a fast chemical reaction whose outcome is measured by a sensitive mass spectrometer.

Why folding is a complex problem

One of the dogmas of modern biology is that the sequence of amino acids determines how a protein will fold. If the amino acid sequence is known, it should be possible to calculate the protein’s final structure from scratch.

But like many things in life, it’s harder than it looks.

“Think of a protein as thousands of atoms connected together by springs,” says Gross, who is also director of the National Institutes of Health/ National Center for Research Resources (NIH/NCRR) Mass Spectrometry Resource “If you were to suspend this object with a string from the ceiling and let it flop around, imagine how many shapes it could take.”

“An enormous number, because it is free to move in so many different ways.”

In practice, scientists often predict protein structure not from scratch but by analogy. They sift through large databases for proteins with similar sequences of amino acids and assume similar amino-acid chains will fold in similar ways.

“But,” says Gross, “at some point any method for predicting protein structure has to be checked against experimental evidence that shows how proteins actually do fold.”

That’s what his research is all about.

A model protein for the experiment

Barstar is a small protein synthesized by a soil bacterium that is often used in folding studies.

Importantly, barstar’s “native state” is known, as is its primary structure, the sequence of the protein subunits called amino acids of which it is made. What isn’t known is how the amino-acid chain twists and coils to form the final structure.

Fortunately for the scientists, barstar, unlike most proteins, is unfolded at zero degrees Celsius and begins to fold as it warms.

The folding takes place in microseconds (thousandths of a second).

How the method works

The scientists begin by injecting a cold solution of barstar and a tiny amount of hydrogen peroxide into an optical fiber so thin it is difficult to believe it is actually hollow.

“Plugs” of sample in the fiber are then hit with two laser pulses in quick succession.

The first pulse, called a T jump, heats the solution just enough to make a different protein conformation energetically favorable.

The second pulse then breaks some of the hydrogen peroxide (H2O2) molecules into two haves, each of which is a very reactive hydroxyl (-OH) radical.

The radicals react with those parts of the protein that are exposed to the solution, “painting” them with oxygen atoms.

“Imagine,” says Gross, “that you suspended a styrofoam model of a partially folded protein and spray-painted it blue. The outside parts would be painted blue; those buried within would remain white.”

The radical reactions must be terminated rapidly; otherwise some "painting" may occur within the structure. Within a microsecond, a scavenger amino acid clears away any remaining hydroxyl radicals to prevent them from breaking bonds and altering the protein’s configuration.

The same process is repeated 500 times, taking rapid-fire “snapshots” of the protein’s quickly changing confirmation.

“The hydroxyl radicals don’t mark everything,” says Gross. “But they mark about half the amino acids, which is really pretty good. Most other chemical reagents are too specific and too slow for this experiment. Compared to hydroxyl radicals they’re just plain ponderous.”

Weighing the painted proteins
“We collect each drop of marked protein as it emerges from the fiber,” says Gross. “Then we digest the protein very slowly and carefully with an enzyme that cleaves the amino acid chains at specific locations, creating a known set of protein fragments, called peptides

These protein fragments are separated according to type by liquid chromatography, and a mass spectrometer then “weighs” each fragment type to see whether it has picked up oxygen atoms.

“Detecting an extra oxygen is child’s play for a modern mass spectrometer,” says Gross. “Most instruments can even detect an extra proton, with is one-sixteenth the mass of an oxygen atom.”

“In the same instrument, on the fly, we break apart the protein fragments and again ‘weigh’ the bits to see which one still carries the oxygen atom. This lets us deduce the oxygen’s location on the original fragment.”

By following barstar to its first intermediate state, or way station enroute to its native state, the scientists demonstrated that the new technique can follow folding and unfolding on a submillisecond time scale.

‘Massive amounts of detail’
Gross is the first to say that this proof-of-principle experiment stands at the end of a long line of elegant experiments of a similar type, called pump-probe experiments.

Other techniques probe the change in protein structure by monitoring the absorption or emission of light--or a similar physical effect. They can provide only global information, such as the rate constant of a folding reaction.

“Because we use a chemical rather than a physical probe, we can see what’s going on in much greater detail,” says Gross. “We can say which part of the structure closes first, which second, and so on.”

The new technique caught the attention of protein scientist Martin Gruebele of the University of Illinois, who spotlighted it in the Dec. 2, 2010, issue of the journal Nature.

It “could provide truly massive amounts of detail about fast protein folding,” wrote Gruebele, which might finally allow scientists “to correctly predict the biologically active structure of a protein starting from the unfolded state.”

Diana Lutz | EurekAlert!
Further information:
http://news.wustl.edu/news/Pages/21665.aspx
http://www.wustl.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>