Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method takes snapshots of proteins as they fold

11.01.2011
Scientists have invented a way to ‘watch’ proteins fold — in less than thousandths of a second -- into the elaborate twisted shapes that determine their function.

People have only 20,000 to 30,000 genes (the number is hotly contested), but they use those genes to make more than 2 million proteins. It’s the protein molecules that domost of the work in the human cell. After all, the word protein comes from the Greek prota, meaning “of primary importance.”

Proteins are created as chains of amino acids, and these chains of usually fold spontaneously into what is called their “native form” in milliseconds or a few seconds.

A protein’s function depends sensitively on its shape. For example, enzymes and the molecules they alter are often described as fitting together like a lock and key. By the same token, misfolded proteins are behind some of the most dreaded neurodegenerative diseases, such as Alzheimer’s, Parkinson's and mad cow disease.

Scientists can't match the speed with which proteins fold. Predicting how chains of amino acids will fold from scratch requires either powerful supercomputers or cloud sourcing (harnessing the pattern recognition power of thousands of people by means of games such as Folding@home).

Either way, prediction is time-consuming and often inaccurate, so much so that the protein-structure bottleneck is slowing the exploitation of DNA sequence data in medicine and biotechnology.

A clever way of watching proteins fold and unfold may finally provide the kind of detail needed to improve protein structure predictions.

In a recent issue of the online version of the Journal of the American Chemical Society three scientists, led by Michael L. Gross, PhD, professor of chemistry in Arts & Sciences and of medicine and immunology in the School of Medicine at Washington University in St. Louis, describe a proof-of-principle study in which they use the new approach to watch the folding of a small protein called barstar.

What they do is roughly analogous to filming flying bullets or bursting balloons with a stroboscope and a fast camera. The "stills" taken by the camera slow motion to the point that normally imperceptible events are laid open to scrutiny.

The scientists are using a version of this old trick to “watch” proteins fold. The “strobe light” is a temperature jump and the “camera” is a fast chemical reaction whose outcome is measured by a sensitive mass spectrometer.

Why folding is a complex problem

One of the dogmas of modern biology is that the sequence of amino acids determines how a protein will fold. If the amino acid sequence is known, it should be possible to calculate the protein’s final structure from scratch.

But like many things in life, it’s harder than it looks.

“Think of a protein as thousands of atoms connected together by springs,” says Gross, who is also director of the National Institutes of Health/ National Center for Research Resources (NIH/NCRR) Mass Spectrometry Resource “If you were to suspend this object with a string from the ceiling and let it flop around, imagine how many shapes it could take.”

“An enormous number, because it is free to move in so many different ways.”

In practice, scientists often predict protein structure not from scratch but by analogy. They sift through large databases for proteins with similar sequences of amino acids and assume similar amino-acid chains will fold in similar ways.

“But,” says Gross, “at some point any method for predicting protein structure has to be checked against experimental evidence that shows how proteins actually do fold.”

That’s what his research is all about.

A model protein for the experiment

Barstar is a small protein synthesized by a soil bacterium that is often used in folding studies.

Importantly, barstar’s “native state” is known, as is its primary structure, the sequence of the protein subunits called amino acids of which it is made. What isn’t known is how the amino-acid chain twists and coils to form the final structure.

Fortunately for the scientists, barstar, unlike most proteins, is unfolded at zero degrees Celsius and begins to fold as it warms.

The folding takes place in microseconds (thousandths of a second).

How the method works

The scientists begin by injecting a cold solution of barstar and a tiny amount of hydrogen peroxide into an optical fiber so thin it is difficult to believe it is actually hollow.

“Plugs” of sample in the fiber are then hit with two laser pulses in quick succession.

The first pulse, called a T jump, heats the solution just enough to make a different protein conformation energetically favorable.

The second pulse then breaks some of the hydrogen peroxide (H2O2) molecules into two haves, each of which is a very reactive hydroxyl (-OH) radical.

The radicals react with those parts of the protein that are exposed to the solution, “painting” them with oxygen atoms.

“Imagine,” says Gross, “that you suspended a styrofoam model of a partially folded protein and spray-painted it blue. The outside parts would be painted blue; those buried within would remain white.”

The radical reactions must be terminated rapidly; otherwise some "painting" may occur within the structure. Within a microsecond, a scavenger amino acid clears away any remaining hydroxyl radicals to prevent them from breaking bonds and altering the protein’s configuration.

The same process is repeated 500 times, taking rapid-fire “snapshots” of the protein’s quickly changing confirmation.

“The hydroxyl radicals don’t mark everything,” says Gross. “But they mark about half the amino acids, which is really pretty good. Most other chemical reagents are too specific and too slow for this experiment. Compared to hydroxyl radicals they’re just plain ponderous.”

Weighing the painted proteins
“We collect each drop of marked protein as it emerges from the fiber,” says Gross. “Then we digest the protein very slowly and carefully with an enzyme that cleaves the amino acid chains at specific locations, creating a known set of protein fragments, called peptides

These protein fragments are separated according to type by liquid chromatography, and a mass spectrometer then “weighs” each fragment type to see whether it has picked up oxygen atoms.

“Detecting an extra oxygen is child’s play for a modern mass spectrometer,” says Gross. “Most instruments can even detect an extra proton, with is one-sixteenth the mass of an oxygen atom.”

“In the same instrument, on the fly, we break apart the protein fragments and again ‘weigh’ the bits to see which one still carries the oxygen atom. This lets us deduce the oxygen’s location on the original fragment.”

By following barstar to its first intermediate state, or way station enroute to its native state, the scientists demonstrated that the new technique can follow folding and unfolding on a submillisecond time scale.

‘Massive amounts of detail’
Gross is the first to say that this proof-of-principle experiment stands at the end of a long line of elegant experiments of a similar type, called pump-probe experiments.

Other techniques probe the change in protein structure by monitoring the absorption or emission of light--or a similar physical effect. They can provide only global information, such as the rate constant of a folding reaction.

“Because we use a chemical rather than a physical probe, we can see what’s going on in much greater detail,” says Gross. “We can say which part of the structure closes first, which second, and so on.”

The new technique caught the attention of protein scientist Martin Gruebele of the University of Illinois, who spotlighted it in the Dec. 2, 2010, issue of the journal Nature.

It “could provide truly massive amounts of detail about fast protein folding,” wrote Gruebele, which might finally allow scientists “to correctly predict the biologically active structure of a protein starting from the unfolded state.”

Diana Lutz | EurekAlert!
Further information:
http://news.wustl.edu/news/Pages/21665.aspx
http://www.wustl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>