Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method for increasing antibiotic yields

06.09.2011
A novel way of increasing the amounts of antibiotics produced by bacteria has been discovered that could markedly improve the yields of these important compounds in commercial production.

It could also be valuable in helping to discover new compounds. With the ever-growing threat from antibiotic resistance, these tools will be very useful in ensuring that we have enough of these useful compounds in the future.

The majority of antibiotics we know of today are produced naturally by a group of soil bacteria called Streptomyces. For commercial production of these antibiotics for clinical use, it is necessary to increase the yield. This has typically been achieved by randomly inducing mutations and screening for strains that show increased production, a process that takes many years. When technology had progressed sufficiently to analyse how this had been achieved scientists found that, in some cases, the increase in yield was due to repeated copies of the genes needed for antibiotic production.

In almost all cases, the genes needed to produce these antibiotics are clustered together in the bacterial genome. In work carried out initially at the John Innes Centre, which is strategically funded by the Biotechnology and Biological Sciences Research Council, Professor Mervyn Bibb and collaborator Dr Koji Yanai from a Japanse laboratory discovered 36 repeating copies of one gene cluster in a strain of Streptomyces that had been repeatedly selected to over-produce the antibiotic kanamycin.

"This suggested to us that controlled and stable amplification of antibiotic gene clusters might be possible, and that if it was, it would be a valuable tool for engineering high yielding commercial strains of bacteria," said Prof Bibb. The researchers then went on to identify the components within Streptomyces responsible for creating the 36 repeating clusters that led to kanamycin overproduction. These consist of two DNA sequences that flank the gene cluster, and a protein, known as ZouA, that recognises the two sequences and replicates them.

In research to be published in the journal Proceeding of the National Academy of Sciences, Prof Bibb and colleagues Dr Takeshi Murakami and Prof Charles Thompson, working at the University of British Columbia, together with the same Japanese pharmaceutical laboratory, describe a system for the targeted amplification of gene clusters. The researchers were able to engineer these components into genetic 'cassettes' and then insert these into another strain of Streptomyces. They successfully used the system to make Streptomyces coelicolor overproduce actinorhodin, a blue-pigmented antibiotic. They believe the system will work equally as well for many other Streptomyces strains and antibiotics, and have also shown that it functions in an unrelated bacterium, Escherichia coli.

The system may also uncover new, undiscovered antibiotics. A number of Streptomyces species have had their entire genomes sequenced, and many more are expected. Researchers have been able to identify other gene clusters within these sequences with unknown products. It is likely that many of these 'cryptic' gene clusters produce potentially new antibiotics, but at an undetectable level, or only under specific environmental conditions. Using the gene cluster amplification system identified here, it will be possible to amplify these cryptic gene clusters, identify their products, and potentially discover new antibiotics for the battle against resistant superbugs.

Reference: A novel system for the amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor, Murakami et al, will be published by PNAS Online Early Edition the week of September 5-9, 2011 doi: 10.1073/pnas.1108124108

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: DNA sequence Escherichia coli Murakami Streptomyces new antibiotics

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>