Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method for increasing antibiotic yields

06.09.2011
A novel way of increasing the amounts of antibiotics produced by bacteria has been discovered that could markedly improve the yields of these important compounds in commercial production.

It could also be valuable in helping to discover new compounds. With the ever-growing threat from antibiotic resistance, these tools will be very useful in ensuring that we have enough of these useful compounds in the future.

The majority of antibiotics we know of today are produced naturally by a group of soil bacteria called Streptomyces. For commercial production of these antibiotics for clinical use, it is necessary to increase the yield. This has typically been achieved by randomly inducing mutations and screening for strains that show increased production, a process that takes many years. When technology had progressed sufficiently to analyse how this had been achieved scientists found that, in some cases, the increase in yield was due to repeated copies of the genes needed for antibiotic production.

In almost all cases, the genes needed to produce these antibiotics are clustered together in the bacterial genome. In work carried out initially at the John Innes Centre, which is strategically funded by the Biotechnology and Biological Sciences Research Council, Professor Mervyn Bibb and collaborator Dr Koji Yanai from a Japanse laboratory discovered 36 repeating copies of one gene cluster in a strain of Streptomyces that had been repeatedly selected to over-produce the antibiotic kanamycin.

"This suggested to us that controlled and stable amplification of antibiotic gene clusters might be possible, and that if it was, it would be a valuable tool for engineering high yielding commercial strains of bacteria," said Prof Bibb. The researchers then went on to identify the components within Streptomyces responsible for creating the 36 repeating clusters that led to kanamycin overproduction. These consist of two DNA sequences that flank the gene cluster, and a protein, known as ZouA, that recognises the two sequences and replicates them.

In research to be published in the journal Proceeding of the National Academy of Sciences, Prof Bibb and colleagues Dr Takeshi Murakami and Prof Charles Thompson, working at the University of British Columbia, together with the same Japanese pharmaceutical laboratory, describe a system for the targeted amplification of gene clusters. The researchers were able to engineer these components into genetic 'cassettes' and then insert these into another strain of Streptomyces. They successfully used the system to make Streptomyces coelicolor overproduce actinorhodin, a blue-pigmented antibiotic. They believe the system will work equally as well for many other Streptomyces strains and antibiotics, and have also shown that it functions in an unrelated bacterium, Escherichia coli.

The system may also uncover new, undiscovered antibiotics. A number of Streptomyces species have had their entire genomes sequenced, and many more are expected. Researchers have been able to identify other gene clusters within these sequences with unknown products. It is likely that many of these 'cryptic' gene clusters produce potentially new antibiotics, but at an undetectable level, or only under specific environmental conditions. Using the gene cluster amplification system identified here, it will be possible to amplify these cryptic gene clusters, identify their products, and potentially discover new antibiotics for the battle against resistant superbugs.

Reference: A novel system for the amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor, Murakami et al, will be published by PNAS Online Early Edition the week of September 5-9, 2011 doi: 10.1073/pnas.1108124108

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: DNA sequence Escherichia coli Murakami Streptomyces new antibiotics

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>