Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Method Empowers Fluorescence Microscopy

The ability of fluorescence microscopy to study labeled structures like cells has now been empowered to deliver greater spatial and temporal resolutions that were not possible before, thanks to a new method developed by Beckman Institute faculty member Gabriel Popescu and Ru Wang from his research group.
Using this method, the researchers were able to study the critical process of cell transport dynamics at multiple spatial and temporal scales and reveal, for the first time, properties of diffusive and directed motion transport in living cells.

Popescu leads the Quantitative Light Imaging Laboratory at Beckman, while Wang of the lab is first author on the paper reporting the method in Physical Review Letters. The new approach, called dispersion-relation fluorescence spectroscopy (DFS), labels molecules of interest with a fluorophore whose motion, the researchers write, “gives rise to spontaneous fluorescence intensity fluctuations that are analyzed to quantify the governing mass transport dynamics. These data are characterized by the effective dispersion relation.”

That ability to study the directed and diffusive transport characteristics of cellular dispersion through a wide range of temporal and spatial scales is more comprehensive than using just fluorescence microscopy. It provides more information than existing methods, such as fluorescence correlation spectroscopy (FCS), which is widely used for studying molecular transport and diffusion coefficients at a fixed spatial scale.

This study used DFS to focus on the cell cytoskeleton subunit actin and found that “the fluorescently labeled actin cytoskeleton exhibits active transport motion along a direction parallel to the fibers and diffusive on the perpendicular direction.” Those results, the researchers said, describe at what scale and when directed versus diffusive motion is taking place in the cell.

“So for the first time we think we’re able to tell those apart and the spatial scales at which each is dominant,” Popescu said.

“Some traditional methods are good at measuring local transport and some are good at measuring the larger scales,” Wang said. “Our method gives a fuller view of what happens inside the cell, to the patterns of traffic. So we can look at both the local scale and at larger scales, and ask at which scale the motion transitions from random to directed motion.”

Popescu said the multiplicity of scales the method offers over techniques like fluorescence correlated spectroscopy is key.

“It’s like looking from the moon at a highway system in North America and you’re trying to understand the traffic,” Popescu said. “There are so many paths and some cars are moving fast, some slow, some over short distances, some over large distances, and all of these things are happening at the same time. We are actually able to break that information down to these simple pieces that seem to represent a universal behavior for all the cells we measured.

“With local measurements, it’s actually difficult to measure all these complexities because you only have one point of measurement. That’s why we tried to search for a better way that also uses the spatial information of that traffic. I think we now have solved it.”

Such knowledge would be valuable for researchers interested in the basic science of cellular dynamics, as well as those working in biomedical research, such as in analysis of a drug’s effect on the body. This technique can be used with current fluorescence microscopy methods.

“I think that the beauty of this method is that you can use a commercial fluorescent microscope that is found everywhere to collect and analyze data in a very simple way,” Wang said. “You don’t need complicated expertise. Everyone can use it.”

The method relies on taking time-resolved sequential data from fluorescent spectroscopic microscopy images and transforming them using the Fourier transform. This computational method enables easier understanding of the image data, providing a different representation of the image. Taking advantage of the respective frequency domains of patterns in the data, as this method does, is especially useful for trying to understand cellular dynamics like transport.

“It turns out the laws of physics are actually best described in the frequency domain,” Popescu said. “The dispersion relation in all branches of physics connects spatial scales with temporal scales. For example, as things get smaller in space, in length if you like, they tend to move faster. A fly will move faster than an elephant.

“This dispersion relation tells you how much faster. If I make something twice as small, is it going to move twice as fast, or four times or eight times? This relationship basically tells you everything about that dynamic phenomenon. So for the first time we saw this universal transport behavior in a living system: a clear combination of diffusive transport, like Brownian motion, and directed, deterministic transport. As a general trend, we found that diffusion is dominant at short scales and directed transport at large distances.”

They have also used the method to study neurons in work with the Center for Emergent Behaviors of Integrated Cellular Systems (EBICS) at Illinois, a multi-university project aimed at building living, multi-cellular machines that address real-world problems. The revelations regarding directed versus diffusive transport could be especially useful in reaching that goal.

“The fact that we can tell where the deterministic and the random transport appears is actually very relevant for looking at cells as a machine,” Popescu said. “What makes a cell machine is actually this directed component because you cannot predict with accuracy Brownian motion, but you can predict this directed motion.”

The group collaborated with Peter Wang’s lab in that research. Popescu said the collaboration with Wang and EBICS is just one example of the potential of DFS to be useful in many areas.

“We are measuring neuron networks. We’ve already shared these results with the Center and they are very excited,” Popescu said. “This is a very broadly applicable method.”

Steve McGaughey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>